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ABSTRACT 

This paper presents an UltraViolet-Visible (UV-Vis) spectral radiance simulation capability for Non-Local 
Thermodynamic Equilibrium (non-LTE) conditions, consisting of a full line-by-line (LBL) radiative transfer (RT) 
algorithm and a UV-Vis signatures library. Results are presented for two example scenarios where strong UV-Vis 
emissions arise, an atmospheric  high altitude auroral event and a High Explosive (HE) detonation. 

 

1. INTRODUCTION 

Local Thermodynamic Equilibrium (LTE) conditions are achieved by collisional energy transfer between molecules, 
causing the molecular internal degrees of freedom to reach equilibrium at the local translational temperature. Non-LTE 
conditions exist when there are not enough molecular excited states formed and lost due to collisions compared to other 
sources and sinks such as radiative pumping, chemiluminescence, photodissociation and spontaneous emission. These 
situations occur in, for example, the atmosphere at high altitudes, exhaust plumes and hypersonic wakes. Codes such as 
NEQAIR1, SAMM2,3 and SOCRATES [http://www.spectral.com/our-software/socrates/] model the spectral radiance by 
explicitly computing the populations of excited states that contribute to the emissions. However in practice, for some of 
the most extreme non-LTE scenarios, the exact sources of the emissions in the UV-Vis are still unknown, and a spectral 
radiance simulation capability based on user-input parameters is crucial to model the signatures and identify the emitting 
species. This paper describes the non-LTE spectral radiance simulation code NLTERAD.  In the UV-Vis region, we 
need to model emissions from highly excited electronic levels arising from extreme non-LTE conditions.  For example,  
solar pumped or electron-impact excitation events, high energy atom molecule, ion molecule collisions in the  upper 
atmosphere, exhaust plumes,  missile intercepts, high explosive (HE) detonation, etc., all produce electronic excited 
states that emit in the UV-Vis region. The desired simulation capability would require as input a simple parameterized 
description of the states involved the emission along the line-of-sight (LOS). The spatially varying non-LTE conditions 
along the radiance path also dictates a multi segmented full Radiative Transfer (RT) model, requiring separate 
parameters for the different segments. Finally, the RT algorithm has to be coupled with a comprehensive spectral library 
that includes signatures of the possible emitters. 

In the following sections, we shall first describe the non-LTE RT formalism and define the key parameters that have to 
be specified to execute the non-LTE LOS spectral simulation in NLTERAD. We shall next describe the current UV-Vis 
spectral signatures library that accompanies the code. Finally, two example applications are presented where non-LTE 
spectra from a high altitude auroral event and a detonation of a High Explosive (HE) are simulated. 

Key Words:  UV-Vis, Non-LTE, Spectral Signatures, Line-by-line, Forward Model, Radiative Transfer, High 
Temperature, Simulation 
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2. NLTE LINE-BY-LINE RT 

For an observer-to-source path of segments l, the general expression for the line-of -sight (LOS) spectral emission at 
frequency  is given by, 
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Where l is the optical depth of segment l at frequency , including contributions from all spectral lines denoted by i, 
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In Eq. (2), i is the density of lower state in spectral line i, and Ll is the segment length. The l
i are absorption 

coefficients in segment l by spectral line i. 

The key frequency dependent quantities in Eq. (1) are thus the emission source and the absorption coefficients. The 
general non-LTE expressions for both emission source and absorption terms are now described in the next two sections.  

2.1 Non-LTE emission source 

For a single transition line i=  where   and  denote the lower and upper states, respectively, the non-LTE 

source term at frequency  is defined as, 
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Where we have defined the population ratio of upper state   to lower state  as, 
N d
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 N and d denote the population and degeneracy of the states. We note that N is the same as i in Eq. (2) 

The averaged source terms at frequency  for segment l in Eq. (1), lJ , include contributions from all spectral lines i, 

each weighted by the corresponding optical depth l i . 

 

2.2 Non-LTE absorption coefficient 

The absorption coefficient at frequency due spectral line i is given by, 

 i i iS f  
  (4) 

Where Si is the line strength for the transition line i from   to  and if is the value of the pressure and temperature 

dependent spectral line shape function at  

 

Si can be defined for either LTE or non-LTE conditions. To model emissions from highly excited electronic levels 
arising from extreme non-LTE conditions, a non-LTE expression for the line strength, NLTE

iS S ,  is required. It is based 

on an extension of the general expression for the LTE line strength4 given at a reference temperature Tref. 
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Where Ia is the abundance factor for the species, E is the lower state energy,   is the energy spacing (both in cm-1), c2 

is the second radiation constant, Q is the total partition function at Tref, and 
2

R  is the transition dipole moment 

squared. 

The non-LTE line strength is computed from the LTE expression by using the non-LTE population ratios, 
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Where 0S is the temperature dependent expression derived from Eq. (5) 
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Eqs (3), (4) and (6) show that the key quantities describing non-LTE conditions in both emission source and absorption 

terms are the population ratios   .  

In the non-LTE radiance models SHARC5/SAMM2,3 the populations of the excited states   and  are directly 

computed by solving a set of chemical kinetic equations describing the production and loss mechanisms for those states. 

The population ratios   are then obtained, and the spectral radiance calculated via Eq. (1). For the spectral simulation 

model, it is useful to define a convenient input parameter to parameterize these ratios. 

The concept of vibrational/vibronic temperatures is now introduced as the most convenient parameters and thus the most 
logical inputs for our spectral simulation model. 

2.3 Vibrational and vibronic temperatures 

A temperature parameter is usually introduced to describe the population ratio, 

 2 lnNLTET c     
  (8) 

where TNLTE  has units of K,   is the energy spacing (in cm-1) and c2 is the second radiation constant. The expression for 
the non-LTE emission source and line strength can then be rewritten in terms of TNLTE as, 
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and 
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It should be pointed out that the concept of temperature introduced here does not necessarily imply any equilibrium 
condition among any of the molecular internal degree of freedoms, but is simply a convenient parameter to describe the 
key quantity that describes the non-LTE radiance, i.e., the population ratio.  



 
 

However, there are various degrees of non-LTE conditions that do allow us to make further approximations to TNLTE. For 
example, expressing the energy spacings in terms of their separate electronic, vibrational and rotational contributions 

 el vib rot      , we can assume the separate internal motions to be described by separate temperatures. Using 

Boltzman factors at the separate temperatures to express the population ratios, Eq. (9) can be rewritten as, 
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Similarly, taking into account the separate degrees of freedom for the partition functions, Eq. (10) can be rewritten for 
the full non-LTE conditions  el vib rotT T T   as, 
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In practical applications, there are situations where some molecular degree of freedom i.e., electronic/vibrational, may be 
in non-LTE while others remain in equilibrium, e.g., rotational. We describe below two spectral regions where those 
situations apply. 

2.3.1 IR spectral region: vibrational/rotational temperatures 

In the IR spectral region where signatures arise from transitions between vibrational levels within the same electronic 
level, the electronic degree of freedom can essentially be ignored. Thus only two temperature parameters need to be 
specified in Eq. (11) and (12) for the IR, Tvib and Trot, together with the kinetic temperature Tkin. In the atmosphere, Trot is 
also often set equal to Tkin in each LOS segment, assuming that the rotational motion reaches equilibrium the fastest. 
This is indeed the assumption taken in the non-LTE radiance code SHARC5 and SAMM2,3. 

2.3.2 UV-Vis spectral region: vibronic temperature approximation 

The approach taken for IR applications can be extended into the UV-Vis.  

Spectral signature simulation models can be used to identify and analyze the UV-Vis molecular bands in observed data 
that arise from transitions between electronic-vibrational levels, or vibronic levels of emitting species. The line positions 
are determined by the electronic-vibrational energy differences between the upper and lower states. It is therefore 
common to combine the electronic and vibrational energies of a given state into the vibronic energy, vibron el vibE E E   , 

then vibronT can be used as a parameter to specify transitions in the UV-Vis in the same way that Tvib is used for the IR.  

Only two temperature parameters need thus be specified in Eq. (9a) and (10a) for the UV-Vis, Tvibron and Trot, together 
with the kinetic temperature Tkin. 

It should be noted that while it may be more rigorous to further separate the vibronic energy into separate electronic and 
vibrational components and use Eqs (11) and (12) in their full form, there is usually not sufficient information to specify 
the distinct temperatures elT  and  vibT  . It is sufficient and more straightforward to use vibronT   as a parameter in our 

spectral simulation model. 

3. UV-VIS SPECTRAL LIBRARY 

The UV-Vis spectral library include signatures for diatomic neutral and ionic molecules that appear in non-LTE 
conditions in high altitude atmosphere, high energy atom molecule, ion molecule collisions in exhaust plumes,  missile 
intercept plasmas, high explosive (HE) detonation. The current list include most of the diatomic species formed by C, N, 
H and O, as well as N2

+, and is still being updated. The transition line data for most diatomics are taken from Kurucz7. 
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5. CONCLUSIONS 

The practicality of the NLTERAD approach of identifying and analyzing spectral signatures has been demonstrated by 
applications in both optical thin and opaque scenarios. The multi-segment non-LTE RT capability was able to simulate 
the varying non-LTE effects along the radiance path exhibited by the emission and absorption features observed in the 
time series of detonation spectra of PETN in Air. The good agreement between the SAMM computed auroral spectra and 
NLTERAD simulated spectra points to the possibility of interfacing the NLTERAD RT module with vibronic 
temperatures derived from separate existing and future kinetic modules designed for diverse non-LTE phenomena to 
predict non-LTE spectral radiance. 
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