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ABSTRACT

A 3D tomographic reconstruction algorithm for an absorptive perturbation in tissue is derived.

The input consists of multiple 2D projected views of tissue that is back-illuminated with diffuse

photon density waves (DPDWs). The algorithm is based on a generalization of the Projection-Slice

Theorem and consists of depth estimation, image deconvolution, filtering, and backprojection. The

formalism provides estimates of the number of views necessary to achieve a given spatial resolution

in the reconstruction. The algorithm is demonstrated with data simulated to mimic the absorption

of a contrast agent in human tissue. The effects of noise and uncertainties in the depth estimate are

explored.
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1. INTRODUCTION

The theory of tomographic reconstruction, taking as input multiple projections of an object, is

at the foundation of diverse medical applications such as Computer Aided Tomography1, Magnetic

Resonance Imaging, Emission Computed Tomography, and Intensity Modulated Radiation Therapy2.

In this paper tomographic reconstruction of tissue anomalies from diffuse photon density wave

(DPDW) images is considered.3,4 Tomographic reconstruction of absorption and scattering

parameters from DPDW images is defined as a 3D reconstruction from multiple 2D projections of

back-illuminated tissue. This is distinct from the more common inversion of the diffusion equation

to match point-source/detector boundary conditions5-9. In the latter case, the term ‘tomography’ often

refers to the reconstruction of objects in two dimensional slices through the tissue. DPDW tissue

imaging, utilizing non-ionizing near-IR photons, may provide unique information about the presence

of cancerous tissue and in-vivo tissue functioning. It has been an area of intense research in recent

years10.

Near-IR photons in the range )2.17.0( µµ −  penetrate deep into tissue but are highly scattered

so that a projected image appears highly blurred11-13. The incorporation of scattering effects in the

model for photon propagation, with the goal of defining an inversion algorithm from projected

images or detector array responses, has appeared in a number of papers5-9,14-19. The tomographic

techniques generally involve the definition of image filters or scattering kernels to compensate for

the photon migration through homogeneous tissues14-17. The procedure derived in this paper is in this

category of DPDW image reconstruction. It is shown that for a small absorptive perturbation in

tissue, such as caused by the accumulation of a contrast agent in a tumor, the photon diffusion

equation and boundary conditions lead to a generalized 3D tomographic reconstruction algorithm
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for the perturbation involving depth estimation, image deconvolution, and backprojection. The

procedure is based on a generalization of the Projection-Slice Theorem20 which relates the Fourier

transform of the projection to a slice of the 3D tissue Fourier transform times an extra depth-

dependent term. This extends an analysis in Ref.(19) to the case of multiple projections. The

reconstruction is necessarily three dimensional because of the migration of photons out of the plane

of entry before and after interaction with the absorptive perturbation. Alternative reconstruction

schemes include the fitting of detector responses to parameterized solutions of the diffusion

equation21-23. However, without the imposition of the projection geometry in the data, the

conditioning of the inversion is less certain. The algorithm presented here could provide a

computationally inexpensive initial solution to improve the conditioning of these techniques.

Scattering and absorption artifacts, such as bone or blood vessels, may be poorly modeled using

the homogeneous tissue DPDW diffusion equation. For the imaging of tumors, the problem of

artifacts is partially overcome by the use of contrast agents. There is evidence that, possibly due to

immature, leaky vasculature24, an intravenous contrast agent persists at the tumor site25,26. The

imaging of early-stage tumor vasculature may be important in determining the likelihood of

metastases24,27. Internal bleeding detection is another application in which the persistent

accumulation of a contrast agent could be imaged28. In recent years it has been shown that multi-

spectral imaging could be used to isolate accumulations in tissue of a contrast agent with a strong

near-IR absorption edge29-31. For example, a clinically feasible compound with negligible medical

complications, Indocyanine Green (ICG), has been studied for these applications32. Alternatively,

near-IR imaging before and after the introduction of the agent could isolate the drug in a tumor.
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In this paper a unified 3D tomographic reconstruction algorithm for absorptive perturbations,

such as arising from an accumulated contrast agent, is derived. The 3D geometry is suggested by

photon migration and the feasibility of measuring 2D transilluminated images on the tissue surface

with a CCD camera29,30. The tomographic geometry and boundary conditions assume a flat image

plane that can be implemented through the use of a bolus matched to the diffusion equation

parameters of the tissue33. We show that the difference of camera images between absorption and

transmission wavelengths approximates the x-ray transform of the 3D function defining the agent

attenuation constant in tissue. This is the basis of the reconstruction algorithm.

The paper will proceed as follows. Section 2 contains the derivation of the projection image from

bi-spectral measurements of a diffuse photon density wave. The treatment, which is similar to

Ref.(19), leads to a generalized 3D Projection-Slice Theorem20 as the basis for image reconstruction

from multiple views. Inversion to the 3D perturbative attenuation function requires depth estimation

and image deconvolution, both of which are discussed in Section 3. This is combined with a known

3D x-ray transform inversion algorithm20 in Section 4. Section 5 presents a demonstration

calculation of the algorithm using simulated data designed to mimic the absorption of a contrast

agent in tissue. Section 6 gives conclusions. Appendices A and B contain derivations of a sufficient

number and optimum orientation of projected images for the 3D reconstruction, respectively.

2. TOMOGRAPHIC DPDW MODEL

In this section the formalism in Ref.(19) is reviewed and extended to multiple views for 3D

tomographic reconstruction of a perturbative absorbing agent. As appearing in the diffusion

equation3,4, photon propagation in tissue is characterized by absorption and (reduced) scattering

constants, aµ  and sµ′ , diffusion constant )3/(0 svD µ′=  for photon velocity v , and the DPDW
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complex wavenumber 00 /)( Divk a ωµ +−=  for DPDW modulation frequency ω . For simplicity

consider the dc limit 0→ω  and substitute for 0D  to define a DPDW attenuation constant

sa µµκ ′= 30 . Typical values of 102. −= cmaµ  and 10.8 −=′ cmsµ  in tissue correspond to an

attenuation of 1
0 69.0 −= cmκ .

The geometry of interest, with sideview shown in Fig. 1, is of a contrast agent attenuation

function )(raδµ , proportional to the agent density,  centered at tzz =  between the source

)0( =z and detector )( dzz = planes. An input DPDW ),(0 srrU  in the medium is perturbed by the

contrast agent to yield a detector plane image difference between transmission and absorption bands,

)()(1 abstranst UUU λλ −= , (1)

 given by19

rdrrGrrUr
D
vrrU dsasdt )(),()(),( 0

0
1 −= ∫δµ , (2)

where sr  and dr  are vectors to the source and detector planes, respectively, and where G is the

diffusion equation Green’s function for a homogeneous medium given in Ref.(19), 

]),(exp[
),(8

1)( 2 zqpiqyipx
qp

dpdqrG µ
µπ

−+= ∫ , (3)

with

222
0),( qpqp ++= κµ , (4)

and where ),( qp  defines the wavenumber coordinate in the image Fourier plane. The expression

in Eq.(3), known as the Weyl expansion, is appropriate for an infinite homogeneous tissue space.
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Uniform illumination of the tissue surface for an infinite half-plane in Fig. 1 corresponds to a z -

dependent photon density given by,

)exp()exp()( 2010 zAzAzV tµκ −+−= ,                                                  (5)

where sat µµµ += (5,34). From the parameters defined above, the value 102.8 −= cmtµ  suggests that

an absorptive perturbation of depth greater than mm0.1≈  has an incident photon density

zeAzV 0
10 )( κ−≅  corresponding to the infinite medium. The resulting difference of output photon

densities is given by

rdzVrrGr
D
vrU dadt ∫ −= )()()()( 0

0
1 δµ . (6)

Substitution of Eq.(3) into Eq.(6) and rearrangement of integrals results in the expression

∫∫∫ −−−−+= )exp(),,()))(,(exp()()exp(
),(8

)( 0
0

21 iqyipxzyxdxdyzzqpzdzViqyipx
qp

dpdq
D

vrU addddt δµµ
µπ

.

(7)

Taking the Fourier transform of tU1  with respect to ),( dd yx  in the image plane ),,( dddd zyxr =

yields

∫ −−= ),,(~)))(,(exp()(
),(

1
8

),,(~
0

0
21 zqpzzqpzdzV

qpD
vzqpU addt µδµ

µπ
, (8)

where ),,(~ zqpaµδ  is the two-dimensional Fourier transform of ),,( zyxaµ . In order to isolate the

function ),,(~ zqpaµδ  in a projection integral, it is necessary to remove the multiplying factors from

the integrand in Eq.(8). For example, it is assumed that the quantity )))(,(exp( zzqp d −−µ is relatively
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slowly varying over a perturbation centered at 0z and extending over a range 2l, )( 0 lz ± ,             

  .1)),(exp()),(exp(
)))(,(exp(

|)))(,(exp()))(,(exp(|

0

00 <<−−=
−−

+−−−−−−
lqplqp

zzqp
lzzqplzzqp

d

dd µµ
µ

µµ  (9)

This condition requires 1),( <<lqpµ  which from Eq.(4) yields

                                               
0

222
0

11
κκ

<
++

<<
qp

l . (10)

Therefore, the object must be small compared to the inverse attenuation cm4.11
0 ≅−κ . The

expression in Eq.(10) also constrains the reconstructed spatial frequencies in ),,(~ zqpaµδ  to satisfy

                                                   




 −<<+ 2

02
22 1)( κ

l
qp ,   (11)

indicating that the reconstructed transverse spatial frequencies are somewhat less (by 2
0κ ) than the

inverse of the z -extent of the object. Equations (10) and (11) suggest that it is difficult to reconstruct

features of the perturbation much more resolved than the object size. For uniform illumination of

absorptive perturbations at depths greater than mm1 , the attenuation length of )(0 zV  in Eq.(5) is

expected of order 1
0
−κ  so that the condition on l  is less constrained than in Eq.(10). These

assumptions allow the localization of the integrand factors of aµδ~  in Eq.(8) to tzz =  with the result,

)0,,(
~~

),(
)))(,(exp(

8
)(

),,(~

0
2

0
1 qp

qp
zzqp

D
zvVzqpU a

tdt
dt µδ

µ
µ

π
−−

= , (12)

where aµδ~~ (p,q,0) is the kz=0 slice of  the 3D Fourier transform of ),,( zyxaδµ . Note that tU1
~  is the

Fourier transform of the projection along the z -axis, which is generalized for multiple views to a

look direction θ̂ .
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The expression in Eq.(12), which is a key result in this paper, is a generalization of the well-

known Projection-Slice Theorem20 relating the Fourier transforms of projections and reconstructed

objects. In this case the 2D Fourier transformed projection, tU1
~ , is proportional to the corresponding

slice through the 3D Fourier transform of aδµ . In addition to aµδ~~ , there is a depth and spatial

frequency-dependent factor

),(
)),(exp()(

8
~ 0

0
2ˆ qp

zqpzV
D

vD t

µ
µ

πθ
∆−

= , (13)

where )( td zzz −=∆ . Aside from this factor, which requires special processing discussed in Section

3, the inversion of Eq.(12) for multiple views is a known generalization of the backprojection-of-

filtered-projections algorithm used in CT reconstruction1,20. This algorithm will be summarized in

Section 4.

3. POINT SOURCE SOLUTION AND DEPTH ESTIMATE

In order to invert Eq.(6) for aδµ  from multiple views it is necessary to remove the depth

dependent factor θ̂

~D  (in Eq.(13)), which implies knowledge of the depth of the perturbation. We

now show that the depth can be estimated by relating the difference image at each angle to the first-

order solution to a point perturbation,  ( )()( xsxa δδµ = ). Assuming that the perturbation is a point

to first order, the output photon density is obtained from the inverse Fourier transform of Eq.(12) as

dpdqqypxi
qp

qpz
VrU dddt ))(exp(

/)(1

]/)(1exp[
)(

2
0

22

2
0

22
0

101 +
++

++∆−
= ∫ κ

κκ
, (14)

where )8/()( 0
2

010 DzvsVV t π= . Evaluation of Eq.(14) yields the point source solution for the

difference of output photon densities given by
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22

22
0010

1
]exp[2),(

rz
rzVyxU ddt

+∆
+∆−= κκπ , (15)

where 22
dd yxr += on the detector plane. Note that, although there is depth ( tz ) dependence in the

factor 10V , the normalized width of the blurred spot described in Eq.(15) determines z∆ .

The initial step in a robust depth estimation algorithm to determine z∆  is to identify the detector

plane location of maximum fluence at the origin. Then the image plane density is integrated over a

disk of radius R  centered on this point to obtain the function,

∫=
R

t drrrURA
0

1 )(2)( π (16)

which upon substitution of Eq.(15) yields,

)]exp()[exp()2()( 22
0010

2 RzzVRA +∆−−∆−= κκπ . (17)

Subtraction and normalization by the total image intensity results in an expression independent of

10V ,

][
)(

)()(ln)( 22
0 Rzz

A
RAAR +∆−∆=





∞
−∞= κψ . (18)

The solution of Eq.(18) for z∆  yields a depth estimate ẑ∆  as a function of R








 −=∆
)/(2

)/()(ˆ
0

22
0

κψ
κψ RRz , (19)

which, in the perturbative limit for a point density, should be constant as a function of R . Therefore,

the average of depth estimates from multiple disk radii defines an overall depth. This method of
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depth estimation was applied recently using in vitro ICG injections in  back-illuminated tissue from

bi-spectral CCD camera images on the surface29,30.

4. DPDW-BASED 3D RECONSTRUCTION ALGORITHM

The results in Sections 2 and 3 can be combined with the x-ray transform inversion algorithm

to define a unified 3D reconstruction algorithm for the perturbative attenuation. Assume that a series

of 2D views of contrast agent accumulation is obtained in the spherical geometry of Fig.2. The 2D

image plane represents the focussed CCD camera face. It is assumed that images are recorded with

uniform illumination of the opposing tissue surface.

The procedure in Section 3 is applied for each θ̂  in Fig.2 to obtain a θ̂ -dependent depth

estimate )ˆ(ˆ θz∆ , and associated length )ˆ(θtz , from Eq.(19). A point source deconvolution,

equivalent to division of ),(~
1 qpU t  by θ̂

~D  with )ˆ(ˆ θzz ∆=∆ , is applied to )(1 dt rU . Note that this

includes division by )(10 tzV , where )ˆ(θtz  is determined by the depth estimate. As seen from the 3D

Projection-Slice Theorem and Eq.(12), the image at θ̂  after deconvolution, denoted ),ˆ( drV θ ,

represents the x-ray transform of the attenuation function )(raδµ . This transform is defined by the

projection of )(raδµ  along rays orthogonal to the image plane

∫
∞

∞−

+−= dtrtRrV dad )ˆ)((),ˆ( 0 θδµθ , (20)

where 0R  is the radius of the imaging sphere8. The radius 0R  is defined by the common center of

3D rotation for the imaging planes. 
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The inversion of the function ),ˆ( drV θ  to )(raδµ  is a generalization of the backprojection-of-

filtered-projections algorithm in CT given by1,20

][)( # VJPra ⊗=δµ , (21)

where #P  is the dual x-ray transform (a 3D backprojection) defined as

θθθθθθθ ˆ]ˆ)ˆ(ˆ)ˆ(,ˆ[))](,ˆ([ 2211
# drrfrrfP d ∫ ⋅+⋅= , (22)

where )ˆ,ˆ,ˆ( 21 θθθ  (see Fig.2) forms an orthogonal triad of vectors for every beam direction θ̂ . The

2D filter J , a generalization of the corresponding profile filter in CT reconstruction, is given by

),ˆ(~||),ˆ(~ kfkkfJ θθ = , (23)

where f~  denotes the Fourier transform, and k  is the 2D spatial frequency vector in the θ̂ -image

domain. The unified reconstruction algorithm is then given by

][ˆ 1
1

ˆ
#

ta UDJP ⊗⊗= −
θµδ , (24)

where #P  is the dual x-ray transform in Eq.(22), J  is the image filter in Eq.(23), }{ 1
ˆ
−

θD  are the

depth dependent point source deconvolution filters, and )},ˆ({ 1 dt rU θ  are the bi-spectral difference

images at view angles }ˆ{θ . We note that this result, deconvolution and filtering followed by

backprojection, is similar to algorithms pursued elsewhere.16,17 But the filtering described here is

more general and allows for fine adjustment to be made to resolve perturbations at different depths.

     In addition to suggesting a reconstruction algorithm, the tomographic formulation of near-IR

imaging is useful for estimates of the required number of views and optimum look directions35. For

example, it is shown in Appendix A that a sufficient number of 3D views is approximated by
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2)2/52(
2

+∆≥ mm
m

Wr
W

M π
π

ω , (25)

where mr  is the maximum radius of the perturbation density, mW  is the maximum spatial frequency

in the reconstruction, and ω∆  is the spatial frequency of the deconvolved images. The expression

in Eq.(25) can be derived from the 3D Projection-Slice Theorem (Eq.(12)) by consideration of the

number of spherical harmonics in the function aµδ~~ 35. Note that the relevant image resolution pertains

to the deconvolved image V  (in Eq.(20)), which is expected to have much higher spatial frequencies

(hence greater ω∆ ) than the blurred, measured images. For example, assuming a mm0.5  tumor

imaged to mm0.2  resolution with mW≈∆ω , an estimate of 17 look directions is obtained from

Eq.(25).

    Another application of the tomographic formalism is in estimates of the optimum look directions

determined by the 3D angle metric35,36

),ˆ]()[,ˆ]([)( 1
1

ˆ1
1

ˆ
#
ˆˆ dtdtd rUDJrUDJPPrd θθθ θθθθ ⊗⊗⊗⊗=Θ −−∫ , (26)

which is a measure of the contribution of the θ̂ -image to the overall reconstruction. The expression

in Eq.(26) is the overlap of the attenuation function and the backprojection of the image at θ̂ . By

consideration of simple shapes, it has been shown that the optimum look directions are toward the

sharper ends of an elongated object37. The expression in Eq.(26), derived in Appendix B, assumes

prior knowledge of the density function shape, so may be useful for re-imaging and processing to

enhance an earlier reconstruction.
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5.  SIMULATIONS

In this section, we apply the 3D tomographic reconstruction algorithm to a simulated data set for

demonstration purposes, and explore in a preliminary way some of the limits of  its applicability. The

simulations are suggested by the tissue parameters and geometry of the measurements of Ref.(19),

where a single view was used to reconstruct a slice of tissue, and are reflective of in-vitro

measurements of human tissue. Here we use twelve view directions to image a cube of tissue 5.3 cm

on a side, with a reduced scattering coefficient 18.0 −=′ cmsµ  and an absorption coefficient aµ  of

102.0 −cm  to give an attenuation constant 1
0 69.0 −= cmκ . In this cube two absorptive perturbations

are centered at ),,( zyx coordinates (-0.2cm, -0.2cm, 0.0cm) and (0.2cm, 0.2cm, 0.0cm), respectively.

The perturbations are 3D gaussian spheres which have an intensity distribution of the form,

))(exp( 2
crr −−α , where the coefficient α  is set to 12 −cm  and cr  is the coordinate of the

perturbation center given above. This functional form was chosen to mimic a spreading distribution

of contrast agent localized around an absorptive site. Sampling was done on a mm scale so that each

voxel was 1 mm3. Figure 3 shows the distribution of the tissue perturbations on a slice through the

0=z  plane of the tissue. Figure 4 shows the twelve imaging directions used for the reconstruction.

These vertices represent both illumination and detection plane directions. These directions were

chosen based on previous studies to determine optimal integration for functions on a sphere.39

The first step in the simulation is to create the “measured” image for each view direction. For

the demonstration purposes, this was done by projecting the tissue inhomogeneities into the twelve

imaging plane directions and convolving these images with the “convolution filter”, 
θ̂

~D , from

Eq.(13), to blur the projection. This low-pass filtering process approximately reproduces the blurring

which would occur from tissue propagation, and we observe that we do in fact obtain images which
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correspond roughly to overlapping point sources at the appropriate depth. Figure 5 shows the relative

intensity on the detector plane for one of the projection angles, which we take as an approximation

to the “measured” transillumination difference image, tU1 , of Eq.(1). The other direction angles look

similar and show a single wide maximum which does not separate the perturbations. This illustrates

the inherent difficulty of imaging in highly scattering media. These projections were performed with

an algorithm first described to process computed tomography data.40

Figure 6 shows the reconstruction of tissue inhomogeneities using the projected difference

images from all twelve directions. Here we used a conventional backprojection reconstruction

algorithm, meaning we used Eq.(24), but with no deconvolution filter, so that 1~ −
θD =1. The two

perturbations are not resolved, as we would expect from the image plane result, and we obtain a

blurred version of the original inhomogeneities. We note that in addition to the conventional “mag-f”

filter, J, of Eq.(23), we used a gaussian taper filter with a full width at half maximum of 10.1 −mm

to mitigate ringing caused by the sharp cut-off of the mag-f filter.41  We also note that some of the

reconstruction has negative intensity. This results from application of the mag-f filter and is a known

artifact of these kind of CT reconstructions. Figure 7 shows a similar reconstruction, in which depth

estimates have been done at each beam direction to construct the deconvolution filter, 1
ˆ
−
θD , of

Eq.(24). These filters were then used in Eq.(24) to implement the  full reconstruction algorithm

including deconvolution. For these calculations the width of the taper filter was decreased,

dampening the highest frequencies of the deconvolution filter and computations were done in double

precision to better condition the numerical filtering process. In contrast to the reconstruction without

the filter, this reconstruction clearly distinguishes the two perturbations, with intensities close to the

original tissue of Fig. 3.
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Actual measurements will of course have an amount of noise, which will be manifest in the

projection plane difference images. This noise may come from the measurement process, or it may

result from a delocalization of the contrast agent through the tissue. The noise is particularly

troublesome for the reconstruction algorithm described here, since the deconvolution filter will

accentuate high frequencies to a great degree, and therefore the effective signal-to-noise ratio of the

reconstruction may become very low. To address these concerns in a preliminary way, we have

performed the same reconstruction described above and have added noise to the tissue space before

projecting to the image plane to create the “measured” images at each view. We added to each voxel

in the tissue space random noise centered at 10 -3 and with a similar spread relative to the maximum

of the two “target” gaussian spheres. The resulting reconstruction is shown in Fig. 8. The two

perturbations are still distinguishable, but the surrounding background tissue intensities show

oscillations almost to the same level as the spheres making the effective signal-to-noise ratio quite

low. The deconvolution algorithm is clearly sensitive to noise. On the other hand, use of more beams

in the reconstruction, or more effective tapers which retain the high frequencies while keeping the

noise low, may mitigate these problems. We are encouraged that recent experimental work using ad-

hoc deconvolution filtering and backprojection appears to create useful reconstructions.42 We have

also explored the sensitivity of the method to errors in the depth estimate. This has not been a large

source of error in the previous examples, but in practice such errors will occur. Figure 9 shows the

reconstruction with noise and the deconvolution filter as in Fig. 8, with the addition of a random

error in the depth for the filter in each beam direction of 20% standard deviation of the known depth

centered around the estimated depth. The results are similar to Fig. 8, except there is less contrast

in the tissue perturbations over the background. This is because the backprojections have an error

due to imprecise deconvolution, in addition to the noise. For other situations, where the
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inhomogenities are distributed throughout the tissue, a single depth estimate will not suffice, and a

series of reconstructions must be performed, one for each “absorption center”.

6.  CONCLUSIONS

In this paper a unified algorithm for 3D DPDW imaging of absorptive perturbations in tissue

with multiple transilluminated 2D views was derived. This algorithm is a generalization of previous

work19 which uses a single view, and extends tomographic reconstruction algorithms based on the

Projection-Slice Theorem in a formal way to include scattering media. An important aspect of this

algorithm is the use of a deconvolution filter which compensates for the blurring from photon

scattering. To construct the filter each look direction requires a depth estimate based on the width

of the image plane response. The point source solution corresponding to the estimated depth is

deconvolved from the image to obtain the x-ray transform of the perturbing attenuation function. The

inversion of the processed images then requires filtering and backprojection.

The algorithm was demonstrated with data simulating the absorption of a contrast agent in

human tissue. The use of a constrast agent is expected to suppress tissue inhomogeneities. It was

found that the deconvolution filter was important to achieve good resolution. However, the

deconvolution filter, which accentuates high frequencies, was shown to be sensitive to noise and the

estimated depths of the tumor absorption. This type of processing will require careful treatment in

practice, but we note that even for a measurement using a single view an effective tomographic

reconstruction can be achieved.19 As noted by Schotland,7 perturbative approaches to the

reconstruction problem are “subject to certain limitations” including the assumption that the

reference medium is uniformly absorbing and scattering which appears not to be the case for

biological tissues. Nevertheless, because backprojection of the transillumated images are likely to
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give a reasonable and computationally inexpensive first-order result, the present algorithm could be

used as a starting point for an iterative approach to the inverse problem.

APPENDIX A: IMAGE NUMBER CONDITIONS

     The Projection-Slice Theorem for the 3D x-ray transform relates the 2D Fourier transform of a

projected image at angle θ̂  to a slice through the 3D Fourier transform of the reconstructed object20.

For the case of NIR imaging of an absorbing perturbation, the relationship in Eq.(12) relates the

projected image to the absorption function convolved with the photon point spread function. The

sampling geometry implied by the Projection-Slice Theorem is shown in Fig. A1, in which Fourier

space samples on a slice through the origin are obtained from the Fourier transform of the projected

image.

     Generalizing the derivation of the “Bow Tie” condition in Ref.(38) for electron microscopy, we

expand the absorption function )(raδµ  and its Fourier transform in spherical harmonics. (It is

assumed that the point spread function has been deconvolved in the following analysis.) The result

is given by

                                           ),,()(),,(
0

φθφθδµ ∑ ∑
∞

= −=

=
l

l

lm
lmlma Yrgr                                               (A1)

and

                                        ),()(),,(~
0

ΦΘ=ΦΘ ∑ ∑
∞

= −=
lm

l

l

lm
lma YWGWµδ ,                                           (A2)

where W  is the magnitude of the 3D frequency vector Θ̂W . From the Funk-Henke Theorem for

spherical harmonics }{ lmY 20,
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                                        ),ˆ()()2(ˆ)ˆ()ˆˆexp( 2/12/3

2

θ
σ

σπωωωθσ lm
l

S

l
lm YJidYi +∫ =⋅                                  (A3)

where θ̂  denotes the unit vector ),(ˆ φθθ =  in 2S (the unit sphere). The expression for the Fourier

transform in spherical coordinates is

                                                θθδµθπµδ ˆ)ˆ()ˆˆ2exp()ˆ(~ 2drdrrWiW aa ∫ Θ⋅=Θ .                                     (A4)

We have by substitution of Eqs.(A1) and (A2), 

                                           drrgrWJr
W

iWG lml

l

lm )()2()2()( )2/1(
2/3 ππ

+∫= .                              (A5)

In Eqs.(A3) and (A5) nJ  is the thn  order Bessel function.

     From Eq.(12) and the geometry in Fig. A1, the deconvolved image ),ˆ( yV θ  at angle 2ˆ S∈θ  is

related to the Fourier transform of the perturbation aδµ  by

                                                         ⊥∈= θηηθηµδ );,ˆ(~)(~~ Va .                                                 (A6)

We are interested in the determination of the function ⊥Θ∈ηηµδ ),(~~
a , from the finite sampling of

views ),ˆ( yV θ . From Eq.(A6), the image at angle Mjj ,,1,ˆ =Θ determines frequency space

samples of )(~~ ηµδ a  evaluated at ⊥Θ∈ jη . More specifically, substitution of

jjjkjk NkW ,1,ˆ,ˆ =Θ∈ΘΘ= ⊥η , into Eq.(A6) yields

                                                     ).ˆ,ˆ(~)ˆ(~~
jkjjka WVW ΘΘ=Θµδ                                                  (A7)
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The geometry suggested by Eq.(A7) is shown in Fig. A1 in which samples on an annulus of radius

W , from the beam oriented at angle jΘ̂ , are proportional to the corresponding frequency space

samples of  )(~~ ηµδ a .

     The set )}({ WGlm  completely determines the reconstructed function )(~~ ηµδ a  at a radial spatial

frequency of W . Hence, the condition for reconstruction of  aµδ ~~  is the inversion of the matrix

equation ),,1;,,1( jNkMj ==  for )}({ WGlm given by

                                              ∑ Θ=Θ
lm

jklmlmjka YWGW ).ˆ()()ˆ(~~µδ                                                   (A8)

Defining the matrix )ˆ())(( jklmlmjk YY Θ≡  we obtain

                                       ∑ ΘΘ==•
lm

jkjlmlmjkjk WVGYWWGY )ˆ,ˆ(~))(( ))(()( .                                (A9)

Equation (A9) represents jN  equations (the number of samples in the plane ⊥Θ j  ) among the

unknowns )}({ WGlm . Assuming a maximum value l  of L  in the expansion of Eq.(A2), the

corresponding number of unknowns is ∑ =
+=+L

l
Ll

0
2 ,)1()12(  which results in a consistency bound

(number of equations ≥   number of unknowns) given by

                                                             .)1( 2

1
+≥∑

=

LN
M

j
j                                                         (A10)

The number of samples obtained from each image for the reconstruction of aµδ ~~  at frequency W  is

determined by the 2D Fourier transform of the image on the annulus of radius W . A resolution
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length of ω∆  in frequency on the image suggests a number of samples ωπ ∆= /2)( WWN j .

Substitution into Eq.(A10) results in an image number threshold given by

                                                              2)1(
2

+∆≥ L
W

M
π
ω .                                                   (A11)

     A sufficient (maximum) value for L  can be estimated by assuming a maximum extent for the

perturbation maxr  with the property 0)( =rglm  for maxrr ≥  in Eq.(A1). Therefore, at a spatial

frequency of W , a bound Wrmax2π  exists for the Bessel function argument in Eq.(A5). From the

Debye approximation38, 0)( ≅xJ n  for )2( +≥ xn , substituted into Eq.(A5), we have 0)( ≅WGlm

for )2/32( max +≡≥ WrLl π . Therefore, from Eq.(A11) a sufficient number of beams for

reconstruction at frequency W  is given by

                                                   2
max )2/52(

2
+∆≥ Wr

W
M π

π
ω .                                              (A12)

In the limit 12 max >>Wrπ , Eq.(A12) is written

                                                       maxmaxmax 2)( WrrM πω∆≥ ,                                                (A13)

where  maxW  is the maximum spatial frequency in the reconstructed function.

     It is interesting to contrast the image number criterion for 2D and 3D cases. Two-dimensional

reconstruction results in a bound

                                                        )2/52( maxmax +≥ WrM π ,                                                (A14)

which is known as the “Bow Tie” condition in CT20 and electron microscopy38. The 2D inversion

bound differs from the 3D bound because only one sample is obtained in frequency space for each



21

annulus. Therefore, the factor ω∆maxr , dependent on the image frequency space resolution, does not

appear in the 2D bound. Note that the matrix inversion, although never actually computed, is more

complex in the cylindrical case due to a required evaluation at each ),( ZW  coordinate, rather than

each radial spatial frequency W  alone.

 APPENDIX B: IMAGE ORIENTATION CONDITIONS

     The reconstruction of the perturbation function )(raδµ  from a discrete set of views, embodied

as the matrix inversion in Eq.(A9), suggests that the generalized inverse of ))(( lmjkY  must be well-

defined. This corresponds to the condition that the matrix

                                    ∑∑
= =

′′ ΘΘ=
M

j

N

k
jklmjklmlmlm

T
j

YYYY
1 1

)(
*

)()()(
* )ˆ()ˆ()(                                       (B1)

is non-singular. Therefore, the eigenvalues of )( * YY T  in Eq.(B1) define a selection criterion at each

frequency W  for the set of view angles },,1,ˆ{ Mjj =Θ . For example, if the samples on the

frequency space annulus in Fig. A1 are not independent, the inversion could require more views than

suggested in Eq.(A11).

     An additional selection criterion, which ranks individual views, is based on the metrics in

the tissue and projection Hilbert spaces. The direct inner products in tissue and projection spaces

between two perturbation functions gf ,  and images gf ,  are defined by

                                                ∫=
2

)()(],[
R

xdxgxfgf ,                                                     (B2)

and
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                                               ∫=
2

),ˆ(),ˆ(,
R

ydygyfgf θθ ,                                             (B3)

respectively20. The dual x-ray transform is the metric space dual of the x-ray transform relative to

the direct metrics. The duality relationship is expressed in the equation

                                                       gPfgPf ,],[ # = ,                                                    (B4)

where f  and g  are functions in tissue and image spaces, respectively. Assuming a continuous

profile function ⊥∈θθ yyf ),,ˆ( , define the sampled profile function 
s

f  by

                                           ),ˆ()ˆˆ(),ˆ(
1

yfyf j

M

j
js

θθθδθ ∑
=

−= .                                         (B5)

We are interested in maximizing the direct inner product between the perturbation functions

corresponding to continuous and sampled views. Substitution of Eq.(21) into the direct inner

product, and application of Eq.(B4), yields

                                         saa VJVJPP
s

)(],[],[ # ⊗⊗=δµδµ .                                  (B6)

Equation (B6) corresponds to an image space metric indicating that the contribution of views to the

reconstruction of aδµ  are ranked in angle by the function

                                ydyVJyVJPP )),ˆ())(,ˆ]([()( #
ˆˆ θθθ θθ ⊗⊗=Θ ∫ ,                              (B7)

which is derivable from the deconvolved images )},ˆ({ yV θ .                                            

REFERENCES

5. S.R. Deans, The Radon Transform and some of its Applications, (John Wiley and Sons, New

York, 1983).



23

6. S. Webb, The Physics of Three-dimensional Radiation Therapy, Conformal Radiotherapy,

Radiosurgery, and Treatment Planning, (Institute of Physics Publishing, Bristol, 1993).

7. O’Leary, M.A., Boas, D., Chance, B., and Yodh, A., Phys. Rev. A., 69, 2658-2661, (1992).

A. Yodh and B. Chance, “Spectroscopy and Imaging with Diffusing Light,” Physics Today, March,

1995,  34-40, and references therein.

8. S.R. Arridge and J. C. Hebden, “Optical Imaging in Medicine: II. Modelling and

Reconstruction,” Phys. Med. Biol., 42, 841-853, (1997).

9. I.W. Kwee, Y. Tanikawa, S. Proskurin, S.R. Arridge, D.T. Delphy, and Y. Yamada,

“Performance of a Null-space Image Reconstruction Algorithm,” in Optical Tomography and

Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II,  B. Chance and

R. R. Alfano, eds., Proc. SPIE, 2979, 185-196, (1997).

10. J.C. Schotland, “Continuous-wave Diffusion Imaging,” J. Opt. Soc. Am. A, 14, 275-279, (1997).

11. Y. Yao, Y. Pei, Y. Wang, and R.L. Barbour, “A Born type Iterative Method for Imaging of

Heterogeneous Scattering Media and its Application to Simulated Breast Tissue,” in Optical

Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies

II,  B. Chance and R. R. Alfano, eds., Proc. SPIE, 2979, 232-240, (1997).

12. M.V. Klibanov, T.R. Lucas, and R.M. Frank, “New Imaging Algorithm in Diffusion

Tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation,

Model, and Human Studies II,  B. Chance and R. R. Alfano, eds., Proc. SPIE, 2979, 272-283,

(1997).

13. See, for example, B. Chance and R. Alfano, eds., Proceedings of Optical Tomography and

Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Volume 2979,

(SPIE Press, Bellingham, WA, 1997).



24

14. J.T. Bruulsema, J.E. Hayward, T.J. Farrell, M. Essenpreis, and M.S. Patterson, “Optical

Properties of Phantoms and Tissue Measured in vivo from mµ3.19.0 −  using Spatially Resolved

Diffuse Reflectance,” in Optical Tomography and Spectroscopy of Tissue: Theory,

Instrumentation, Model, and Human Studies II,  B. Chance and R. R. Alfano, eds., Proc. SPIE,

2979, 325-334, (1997).

15. V.G. Peters, D.R. Wyman, M.S. Patterson, and G.L. Frank, “Optical Properties of Normal and

Diseased Human Breast Tissues in the Visible and Near Infrared,” Phys. Med. Biol., 35, 1317-

1334, (1990).

16. W.-F. Cheong, S.A. Prahl, A.J. Welch, “A Review of Optical Properties of Biological Tissues,”

IEEE J. Quantum Electronics, 26, 2166-2185, (1990).

17. R.J. Grable, D.P. Rohler, and K. Sastry, “Optical Tomography Breast Imaging,” in Optical

Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies

II,  B. Chance and R. R. Alfano, eds., Proc. SPIE, 2979, 197-210, (1997).

18. S.A. Walker, A.E. Cerussi, and E. Gratton, “Back-projection Image Reconstruction using Photon

Density Waves in Tissues,” in Optical Tomography: Photon Migration and Spectroscopy of

Tissue and Model Media: Theory, Human Studies and Instrumentation,  B. Chance ed., Proc.

SPIE, 2389, 350-357, (1995).

19. S.B. Colak, H. Schomberg, G.W. ‘t Hooft, and M.B. van der Mark, “Optical BackProjection

Tomography in Heterogeneous Diffusive Media,” in R.R. Alfano and J.G. Fujimoto, eds., OSA

TOPS in Advances in Optical Imaging and Photon Migration, 2, 282-289,(1996).

20. S.B. Colak, D.G. Papaioannou, G.W. ‘t Hooft, and M.B. van der Mark, “Optical Image

Reconstruction with Deconvolution in Light Diffusing Media,” in Photon Migration in Tissues,

B. Chance, D. T. Delpy, and G. J. Mueller, eds., Proc. SPIE, 2626, 306-315, (1995).



25

21. A.J. Devaney, “Reconstructive Tomography with Diffracting Wavefields,” Inverse Problems,

2, 161-183, (1986).

22. X.D. Li, T. Durduran, A.G. Yodh, B. Chance, and D.N. Pattanayak, “Diffraction Tomography

for Biochemical Imaging with Diffuse-photon Density Waves,” Optics Letters, 22, 573-575,

(1997).

23. F. Natterer, The Mathematics of Computerized Tomography, (John Wiley and Sons, New York,

1986).

24. S.C. Feng, F.-A. Zeng, and B. Chance, “Analytical Perturbation Theory of Photon Migration in

the Presence of a Single Absorbing or Scattering Defect Sphere,” in Optical Tomography:

Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and

Instrumentation,  B. Chance ed. Proc. SPIE, 2389, 54-63, (1995).

25. D.A. Boas, M.A. O’Leary, B. Chance, and A.G. Yodh, “Scattering of Diffuse Photon Density

Waves by Spherical Inhomogeneities within Turbid Media: Analytic Solution and Applications,”

Proc. Natl. Acad. Sci., 91, 4887-4891, (1994).

26. S. Fantini, S.A. Walker, M.A. Franceschini, M. Kaschke, P.M. Schlag, and K.T. Moesta,

“Assessment of the Size, Position, and Optical Properties of Breast Tumors in vivo by

Noninvasive Optical Methods,” Applied Optics, 37, 1982-1989, (1998).

27. L.S. Heuser and F.N. Miller, “Differential Macromolecular Leakage from the Vasculature of

Tumors,” Cancer, 57, 461-464, (1986).

28. X. Li, B. Beauvoit, R. White, S. Nioka, B. Chance, and A. Yodh, “Tumor Localization using

Fluorescence of Indocyanine Green (ICG) in Rat Models,” in Optical Tomography: Photon

Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and

Instrumentation,  B. Chance ed. Proc. SPIE, 2389, 789-797, (1995).



26

29. M.M. Haglund, D.W. Hochman, A.M. Spence, and M.S. Berger, “Enhanced Optical Imaging of

Rat Gliomas and Tumor Margins, Neurosurgery, 35, 930-940, (1994).

30. N. Weidner, J.P. Semple, W.R. Welch, and J. Folkman, “ Tumor Angiogenesis and Metastasis-

Correlation in Invasive Breast Carcinoma,” New Eng. J. Med., 324, 1-7, (1991).

31. S.P. Gopinath, C.S. Robertson, R.G. Grossman, and B. Chance, “Near-infrared Spectroscopic

Localization of Intracranial Hematomas,” J. Neurosurg., 79, 43-47, (1993).

32. M. Braunstein, R.W. Chan, and R.Y. Levine, “Simulation of Dye-enhanced Near-IR

Transillumination Imaging of Tumors,” Proceedings of the IEEE Engineering in Medicine and

Biology 19th Annual International Conference, p. 93, Oct. 30, 1997, IEEE New York, publishers.

33. M. Braunstein, R.W. Chan, and R.Y. Levine, “Dye-enhanced Multispectral Transillumination

for Breast Cancer Detection: Feasibility Measurements,” Proc. IEEE Engineering in Medicine

and Biology 19th Annual International Conference, p. 91, Oct. 30, 1997, IEEE, New York,

publishers.

34. S. Zhou, M.A. O’Leary, S. Nioka, and B. Chance, “Breast Tumor Detection using Continuous

Wave Light Source,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and

Model Media: Theory, Human Studies and Instrumentation,  B. Chance ed. Proc. SPIE, 2389,

809-817, (1995).

35. T. Carski, “Indocyanine Green: History, Chemistry, Pharmacology, Indications, Adverse

Reactions, Investigation and Prognosis: An Investigative Brochure,” Becton Dickinson and

Company, Inc., Cockeysville, Maryland, March 17, 1995.

36. X. Wu, L. Stinger, and G.W. Faris, “Determination of Tissue Properties by Immersion in a

Matched Scattering Fluid,” in Optical Tomography and Spectroscopy of Tissues: Theory,



27

Instrumentation, Model, and Human Tissues, B. Chance and R. R, Alfano eds. Proc. SPIE, 2979,

300-306, (1997).

37. A. Ishimaru, Wave Propagation and Scattering in Random Media, Volume 1, Single Scattering

and Transport Theory, (Academic Press, New York, 1978), 175-185.

38. R.Y. Levine, E.A. Gregerson, and M.M. Urie, “The Application of the X-ray Transform to 3D

Conformal Radiotherapy” in C. Borgers and F. Natterer, eds., Computational Radiology and

Imaging: Therapy and Diagnostics, (Springer-Verlag, New York, 1999).

39. B.P. Medoff, “Image Reconstruction from Limited Data: Theory and Applications in

Computerized Tomography,” in H. Stark, ed., Image Recovery: Theory and Application,

(Academic Press, New York, 1987).

40. M. Braunstein and R.Y. Levine, “Optimum Beam Configurations in Tomographic Intensity

Modulated Radiation Therapy”, submitted for publication, Phys. Med. Biol., March, 1999.

41. Crowther, R.A., DeRosier, D.J., and Klug, A., “The Reconstruction of a Three-dimensional

Structure from Projections and its Application to Electron Microscopy,” Proc. Roy. Soc. Lond.

A., 317, 319-340, (1970).

42. W. Neutsch, “Optimal Spherical Design and Numerical Integration on the Sphere”, J. of Comp.

Phys. 51, 313-325 (1983).

43. R. L. Siddon, “Fast Calculation of the Exact Radiological Path for a Three-Dimensional CT

Array”, Med. Phys. 12, 252-255 (1985).

44. G. T. Gullberg and T. F. Budinger, “The Use of Filtering Methods to Compensate for Constant

Attentuation in Single-Photon Emission Computed Tomography”, IEEE Trans. Bio. Eng. BME-

28, 142-157 (1981).



28

45. R. J. Grable, D. P. Rohler, and S. Kla, in Optical Tomography and Spectroscopy of Tissues:

Theory, Instrumentation, Model, and Human Tissues, B. Chance and R. R, Alfano eds. Proc.

SPIE, 2979, 197-210, (1997).

tzz =
0=z dzz =

( )zV0

Source Plane CCD Image Plane

Contrast
Agent

)( rrG d −

Figure 1. Sideview of tomographic DPDW measurement of contrast agent attenuation.
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Figure 2. Geometry of multi-spectral 3D tomographic imaging of a contrast agent.

Figure 3. Distribution of tissue perturbation. A slice through the 0=z  plane is shown. Axes are  
 in units of mm  and the intensity has been normalized to 1.0 at the maximum.
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Figure 4. Imaging directions for 3D transillumination reconstruction. Units are relative.

Figure 5. Relative intensity on the detector plane for one of the projection angles. The ),( yx   
points are in units of mm , and the z  direction shows the relative intensity.
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Figure 6. Reconstruction of tissue perturbations using all twelve views. A slice through the 0=z
plane is shown. Axes are in units of mm  and the intensity has been normalized to 1.0 at the

maximum. No deconvolution was performed.

Figure 7. The same as Fig. 6 except deconvolution of the projected images was performed prior
to backprojection.
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Figure 8. The same as Fig. 7 but noise has been added to the tissue volume to create the
simulated images used for the reconstruction.

Figure 9. The same as Fig. 8, but with uncertainty in the depth estimation.
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Figure A1. Geometry for determination of the number of views necessary for reconstruction to
achieve a given resolution. It is assumed that the images have already been deconvolved, as

discussed in the text.
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