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ABSTRACT 

 
A method of optimizing the selection of spectral channels in a spectral/spatial remote sensor has been developed that is 
applicable to the design of multispectral, hyperspectral and ultraspectral resolution sensors.  The approach is based on an end 
member analysis technique that has been refined to select the most information dense channels.  The algorithm operates 
sequentially and at any step in the sequence, the channel selected is the most independent from all previously selected 
channels.  After the channel selection process, highly correlated channels, which are contiguous to those selected, can be 
merged to form bands.  This process increases the signal to noise for the new broader spectral bands.  The resulting bands, 
potentially of unequal width and spacing, collect the most uncorrelated spectral information present in the data.  The band 
selection provides a physical interpretation of the data and has applications in spectral feature selection and data compression. 
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1. INTRODUCTION 
 

Hyperspectral data cubes, or scenes, contain a spectrum for each pixel which can consist of hundreds of channels.  The 
pixel spectra are highly correlated and there is high correlation among the measured channels.  It is desirable to compress this 
information into useful bands by eliminating or concatenating redundant channels.  Commonly applied techniques involve 
eigenvector analysis of the scene covariance matrix or autocorrelation matrix and singular value decomposition.  These have 
desirable optimum properties for data compression, but by blending linear combinations of all channels into the eigenvectors, 
a physical interpretation is more difficult and their utility for sensor design studies is more limited.  Techniques which use 
matrix factorization as a step to find a reduced set of physical bands include an iterative method developed by Price1,2 and 
Zhao-Liang3.  More recently, a method was developed4 in which QR factorization (Q is a matrix of orthonormal columns and 
R is upper triangular matrix) coupled with analysis of principal components is used to find independent bands.  The approach 
in our work also leads to a factorization, but not an orthogonal factorization. Our approach most closely follows that of 
Bowles5 who use a modified Gram Schmidt process with a pivoting strategy to generate end-members. 
  

Hyperspectral scenes typically contain far fewer materials than either channels or pixels.  Measurements from aircraft of 
satellites may result in spatial resolutions that lead to several pixels with more than one of the unique materials in view.  
Mixture models which use physical sets of component spectra, end-members, offer both interpretation and data reduction, 
although they are not as efficient as eigenvector techniques for compression.  It is desirable to find both end-members and a 
reduced set of bands.  In these physical models the end-member spectra and their abundances are positive, the end-members 
form the edges of a convex cone.  Most methods that derive end-members from the scene utilize the mathematics of convex 
sets6,7,8.  Keshava and others have recently reviewed several techniques9.  The end-members extracted from the scene may be 
pure materials or if the “pure” material does not exist in the scene the end-members are the “most pure”, the pixels with the 
highest abundance of a material.  The number of materials present in the scene is typically assumed to be equal to the rank of 
the matrix formed from the hypercubes with pixel spectra forming columns and channel vectors forming rows.  The 
maximum number of linearly independent bands is equal to the rank as well.  This interpretation is complicated by variations 
in material spectra within a scene induced by the variations in illumination of the materials or in environmental interactions.  
The small variations in material spectra together with the high correlations among spectra of different materials and sensor 
noise combine to make rank determination challenging.  There are usually several plausible models over a range of assumed 
rank, with the transition from variations in material spectra to noise hard to distinguish.  There is a close connection between 
the “best conditioned” basis and the convex cone which contains the data matrix10.  The condition of a basis can be measured 
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through the magnitude of the determinant of its metric matrix, the Gramian.  The “best conditioned” basis is the basis with 
the largest Gramian.  The Gramian is equal to the volume enclosed by the basis.  This basis points to extreme points of the 
data.  The basis that is extracted from the scene encloses the maximum volume and is a convex cone that contains the data.   
 

Another criteria for conditioning is the condition number (largest eigenvalue of the metric matrix divided by the 
smallest).  The basis with minimum condition number is similar to the basis with maximum Gramian.  In finding the convex 
hull of the data of a given dimension, one searches an n-dimensional scatter plot for extreme points.  One either finds a 
simplex of minimum volume that circumscribes the data6, or a simplex of maximum volume that can be inscribed within the 
data8.  Ifarraguerri and Chang11 have an alternate approach that finds an optimum from outside the data points.  Their 
approach like Gruninger10 is capable of finding pure material spectra even when the material only appears within mixed 
pixels in the data.  Minimizing or maximizing simplex volumes or Gramian determinants leads to the combinatorial problem 
of finding an optimum set of n-spectra or channels from a much larger set.  Below we discuss a technique for finding end-
members that is less computational than the techniques discussed above.  
 

2. METHOD 
 

Given the difficulty of determining the rank, we seek an approach that avoids rank determination as a preprocessing step.  
We also avoid the combinatorial problem.  The approach taken to end-member selection and band selection is sequential and 
finds the most variable end-members or channels in order.  Our approach is patterned on matrix algebraic techniques of 
finding a row or column basis for the matrix.  The bases generated however, are convex cones.  
 

A convex cone of a set of vectors {vk} is the set of all vectors {Vp} where ∑=
k

pkkp avV , and the 

coefficients, 0, ≥pka .  A convex hull has the added condition that the coefficients sum to one, 1, =∑
k

pka . 

As the dimension of the number of bases increases, the errors in approximating the matrix by the larger convex cone 
decreases monotonically.  We find a sequence of convex cones, which form approximating bases of rank k, with k ranging 
from 1 to n.  This avoids the combinatorial problem of looking for the best pair or trio etc.  It is sub-optimal in that the search 
is only for the best spectra or channel to add to the existing ones.  The method allows the rank to be estimated after the 
sequence has been found.  Additional criteria can be used to determine the number of end-members based on the spectral 
features found in the end-members and other properties of the mixture model.  If the vectors of the convex cone of dimension 
n are “pure” materials and the scene contains only mixtures of these materials, then the coefficients should sum to one and 
the abundance matrix will be sparse. 
 

We start with a hyperspectral data array where each column vector is a pixel spectrum and each row vector contains the 
radiances or apparent reflectances of the all of the pixels in the channel.  We seek a column or row basis depending on 
whether end-members are sought or channel selection is sought respectively.  Since scenes typically have many more pixels 
than channels, if a channel basis is sought, it is expedient to work with the autocorrelation matrix or a set of its eigenvectors 
rather than the full data matrix.  Alternatively, the number of pixels or channels can be reduced via a quick clustering.   
 

An additional preprocessing choice concerns normalization.  Normalization of pixel spectra will suppress variations in 
brightness induced by illumination variations.  Normalization may be appropriate for end-member selection, particularly 
when working with radiance data rather than with pseudo-reflectance data.  For the selection of spectral channels that have 
significant signal the vectors are not normalized.  This avoids the use of noise dominated channels. 
 

Following preprocessing an extreme point is taken as the first vector.  This extreme point can be selected automatically 
as the brightest, the darkest, the least like the average or some other vector selected by the user.  This vector becomes an end-
member or selected channel.  For channel selection the brightest channel is usually selected, insuring maximum signal.  This 
is the channel with the longest channel vector. 
 

After a vector is selected, all remaining vectors have this vector removed from it by convex projection. The approach is 
patterned after a sequential approach to Gram-Schmidt orthogonalization, known as the Modified Gram-Schmidt method 
(MGS).  MGS is preferred over the standard GS because of its numerically stability12.  A convex projection rather than an 



orthogonal projection is used to remove a selected basis vector.  The traditional orthogonal projection, OV , which removes a 
selected vector, V, from one of the remaining vectors , vk, is 
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where ck is the projection coefficient which can be positive or negative.  The convex projection, PV, 
yields kkkV VcvvP −= for positive projection coefficient, and kkV vvP =  for a negative projection coefficient. 
 

Whenever constraints are active in the convex projection technique non-orthogonality is introduced, however our goal is 
to obtain a sequence of convex cones based on the selection of edge vectors and not an orthogonal basis.  If convex 
projection constraints are active, then the vector(s) which are not orthogonalized to the newest selected end-member or 
channel are outside of the current cone in the sequence.  The convex projection does not shorten these vectors, making them 
prime candidates to be selected in subsequent steps.   

 
Our selection strategy is to select as the next member of the basis the vector that has the largest component outside the 

convex cone of the current members. The length of the component of vk that is outside of the convex cone is given 

by )sin(0 θkv  where 0
kv  is the vectors original length and θ is the angle that the vector makes with the convex cone of the 

selected members. If the vectors are initially normalized our selection strategy selects the vector which make the maximum 
angle with the convex cone of the selected members.  When the vectors are not normalized, then there is a length scaling. The 
length scaling weights signal to noise in the channel selection process. More general weighting of the channels can be 
directly implemented by pre-multiplying the data array with a weighting matrix. The weighting matrix could be a simple 
diagonal matrix leading to a scaling or the inverse of a covariance or scatter matrix from discriminant analysis leading to a 
selection of independent bands with optimal discriminating power. Our selection strategy has an exact analog in an 
orthogonalization scheme known as Augmented Modified Gram-Schmidt13. See Bowles5 for the application of this 
orthogonalization technique to end-member determination.  In the orthogonalization techniques, the vector selected has the 
largest component orthogonal to the subspace of the already chosen vectors.  When selected, this vector is removed from the 
remaining vectors by orthogonal projection.  Our technique and the orthogonalization technique will select the same vectors 
until a constraint becomes active at which time the orthogonal projection shortens the vector component which is outside of 
the cone while the convex projection does not.  Thereafter, the unselected vectors have different lengths in the two strategies, 
and different vectors are chosen.  

 
The result of our process is a sequence of convex cones that approximate the database with increasing accuracy.  The 

magnitude of the components of vectors lying outside of the convex cone, the length of the residual vectors, decrease 
monotonically and asymptotically approach zero.  The rank or dimension of the convex cone can be selected based on a plot 
of the root mean square residual as a function of dimension using the same criteria for determining rank from SVD.  For 
example, if there is a break in the curve of the root mean square error versus the number of vectors, this could be taken as an 
indication of the appropriate dimension.  For this technique the root mean square error curve will always lie above that of a 
SVD, since the SVD is the most efficient expansion. 

 
Since a sequence of cones are available, one can use other criteria to estimate the rank.  Most of the spectral differences 

among the end-members or channels will be contained in the first few vectors chosen, and those chosen later will have small 
variations from those already chosen.  Direct inspection of the sequence of vectors will also aid in determining a useful 
working dimension to assume.  For end-members, the abundance matrix should be sparse.  Mixed pixels will typically have 
only a few materials with non-zero abundance.  The investigation of abundance matrices for sparseness may help in the 
dimension determination.  The residual scene should be relatively structure free spatially and should be primarily instrument 
noise.  The convex cone coefficients for ‘true’ end-member reflectances should sum to unity, if atmospheric correction has 
removed all illumination effects.  However, for materials in shadow, spectral shape variations are not currently removed by 
atmospheric compensation algorithms, although such an effort is underway14. 

 



Once channel selection has been performed, a broadening into bands can be performed.  Our approach is to look at 
channels that are adjacent to the selected channels and merge those that are highly correlated together into a broad band.  We 
have thresholded on cross correlation coefficient and used convex cone analysis to determine correlation.  In the cone 
analysis, a channel will be highly correlated to one of the chosen channels if all but one of its expansion coefficients are close 
to zero.  The one non-zero expansion coefficient for the highly correlated channel is large (since we do not normalize, the 
coefficients do not sum to one).  The latter approach is more effective for the high correlation that is found among all the 
channels. 
 

3. APPLICATION  
 

We applied the technique to an AVIRIS Stennis reflectance cubes, see Figure 1.  The atmospheric compensation was 
performed using the SSI Atmospheric Compensation Code (ACC).  The algorithm was applied to the image to find end-
members.  In these examples, we chose to not normalize the pixel vectors and to select the brightest pixel as the starting 
vector. Locations in the scene where the first twenty end-members were selected are indicated with arrows in Figure 1.  The 
adjacent numbers indicate the order in which the end-members were selected.  The relative errors in approximating the scene 
pixels monotonically decrease as the dimensions of the cones formed by the algorithm increases.  A plot of the maximum 
relative error as a function of dimension or number of end-members is shown in Figure 2.  The relative error is the fraction of 
the length of a pixel that is outside of the cone.  The maximum is the largest such error out of the entire data cube.  The 
vector that has this maximum error would be the next vector selected to add to the existing cone.  In this example, there is a 
rapid decrease in relative error with dimension up to six end-members, then a more gradual decrease up to twelve end-
members the an extremely gradual decrease as the error asymptotically approach zero.  This curve can be used to select the 
rank or dimension and an appropriate convex cone for an application.  By selecting a cone of dimension twelve, for example, 
the end-member that would be added to make a 13 dimensional cone is the pixel with the largest relative error at dimension 
12.  All other pixels in the scene will have smaller residuals than this vector.  A plot of this pixel and the convex cone 
representation of it is shown in Figure 3.  It is interesting to note that this pixel spectrum is very similar to but less bright, 
(80% of the intensity), than the third end-member selected.  The convex coefficients indicated that the 13th end-member 
modeled reflectance came from a 79% contribution of the third end-member and a 6% contribution from the sixth end-
member.  Also shown in Figure 3 are the spectra of the third end-member and the 20th end-member.  The only significant 
contribution to the reflectance of spectrum came from end-member three with 56% contribution.   All three of the pixels 
contain vegetation.  The apparent reflectance varies by a factor of two.  This variation may be caused by illumination 
differences between pixels of similar material, with the less bright pixels being more in shadow, or by differences in the plant 
materials themselves.  
 

The algorithm was also applied to find channels.  We chose to not normalize the channel vectors.  The brightest channel 
vector was chosen as the first vector.  The first eight channels selected are displayed in Figure 4 along with the first eight 
end-members. By not normalizing, the channels with significant signal are chosen and their locations are such that the eight 
materials can be identified.  It is difficult to form broader bands based on standard cross correlation analysis since all of the 
bands are very highly correlated.  To associate other channels to the selected channels we use convex analysis.  This can be 
performed using a non-negative least squares algorithm15.  The convex coefficients for each of the channels is shown in 
Figure 5.  The technique leads to well localized bands of highly correlated contiguous channels.  Band widths can be selected 
by placing a threshold on the magnitude of the convex coefficients.  As with the end-members, the algorithm selected the 
brightest channels form the bands.  By not normalizing the channels initially, the convex coefficients indicate the level of 
brightness in each channel.  For channels which have more than one significant contribution for the selected channels, the 
coefficients indicate the relative strengths of the selected channels. 



 

Figure 1.   An AVIRIS Stennis apparent reflectance cube.  The atmospheric compensation was performed using the SSI Atmospheric 
Compensation Code (ACC).  Locations in the scene where the first 20 end-members were selected are indicated in white. 
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Figure 2.   The maximum relative error as a function of dimension or number of end-members.  The relative error is the fraction of the 
length of a pixel that is outside of the cone. The maximum is the largest such error out of the entire data cube. 
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Figure 3.   Convex cone representation to pixel spectrum for end-member 13 (dashed).  Also shown are spectra for end-members 13, 3, 

and 20. 
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Figure 4.     The first eight channels selected and the first eight end-members. 
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Figure 5.   The convex coefficients for the AVIRIS channels for the eight selected channels.  Band widths can be determined by setting a 

threshold on magnitude of convex coefficient. 

 
4. CONCLUSIONS 

 
The goal of this effort is to find a efficient method of reducing the complexity of hyperspectral data, while maintaining a 
physical representation of scene materials and important bands.  Two challenging steps in such data reduction are the 
combinatorial problem of selecting a small set of n-pixels or channels from much larger sets to find a solution to an 
optimization problem and the determination of the appropriate size, n, of the small set.  Our approach avoids the 
combinatorial problem by solving a sub-optimal problem of finding the best set sequentially.  The appropriate size or 
dimension the convex set does not need to be determined prior to application of the method.  The properties of the sequence 
of convex cones and convex analysis of the data can be utilized in the estimate of the appropriate size or dimension, n, to 
assume.  The advantages of a sensor with ‘designer’ channel configurations are significant.  By selecting only optimal 
channels for detection, the time required to collect a frame of data can be significantly reduced.  Data transfer rates and 
processing overhead of satellite based systems could be substantially condensed if the number of channels can be reduced by 
half or more.  Finally costs associated with production of high resolution sensors would be minimized. 
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