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ABSTRACT 

A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through long-

wavelength infrared spectral imagery of the Earth for arbitrary locations and cloud fields.  The method combines cloud-

free surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport 

model.  The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is 

incorporated to speed convergence.  The surface and cloud images are combined with an upper atmospheric description 

with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity.  The method 

enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides 

hyperspectral wavelength resolution with minimal computational effort.  The simulations agree very well with much 

more time-consuming direct Monte Carlo calculations of the same scene. 
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1. INTRODUCTION 

The design of optical remote sensing systems requires good estimates of the anticipated radiance levels and their spectral 

and spatial distributions.  In particular, there is a need for software that can rapidly generate a wide, representative 

variety of radiometrically accurate images of the earth’s atmosphere and surface at arbitrary optical wavelengths, 

ranging from the ultraviolet (UV) to the long-wavelength infrared (LWIR), as viewed from aircraft and spacecraft. 

The biggest challenge is the quantitative modeling of cloud fields and their effects, which require calculations with a 3-D 

radiation transport (RT) code.  Such calculations are computationally intensive, making them prohibitive for on-the-fly 

use and limiting the ability to assemble comprehensive scene libraries.  The input variables that specify a scene are 

numerous, and include surface properties, which are geographically and seasonally dependent, observer line-of-sight 

variables, sun illumination angles, wavelength, atmosphere model and cloud type and coverage.  An image library that 

fully covers the scenarios of interest might require around 10
4
 monochromatic images, each of which might take an hour 

or more to compute on a PC processor with a 3-D Monte Carlo RT code such as MCScene [1-4].   

This paper describes a practical approach for rapidly generating arbitrary earth background scenes with the wavelength 

and spatial resolution and coverage of typical hyperspectral and multispectral sensors.  The key is to use first-principles 

RT equations to decompose the image radiance into separate components that depend on only a small number of input 

variables, thereby reducing the required calculations by orders of magnitude.  Pre-calculated cloud field databases are 

combined with separate surface and upper atmospheric descriptions to build the desired scene.  Separate RT models are 

used for solar and thermal radiation sources.  The models generalize standard equations used for atmospheric 

compensation in clear sky conditions [5] to the case of an inhomogeneous 3-D atmosphere.   The cloud field images are 

calculated by MCScene using a voxelized cloud model.  A local correlation-based data fusion method is used to suppress 

Monte Carlo “photon” noise, dramatically speeding the convergence of the calculations and enabling assembly of an 

extensive cloud image database in reasonable time.  In addition, the observed low spectral dimensionality of the cloud 

field database allows the use of sparse pixel sampling to extend the simulations from the multispectral domain (several 

to tens of bands) to the hyperspectral domain (hundreds of bands) with little or no additional computational effort. 

The organization of this paper is as follows.  Section 2 presents the radiation transport models for above-cloud views and 

outlines the MCScene cloud field calculations that provide the model inputs.  Section 3 describes the noise reduction and 

sparse sampling methods used to reduce computation time. Section 4 presents example scene simulations and a 

comparison with an “exact” direct Monte Carlo simulation. 
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2. RADIATION TRANSPORT MODELING 

For the present we consider views of the ground from above the cloud tops.  The key elements of the RT model are: 

 Partitioning the radiance into contributions from a horizontally uniform upper atmosphere above the cloud tops, 

a heterogeneous atmosphere below the cloud tops, and the nominally flat earth surface (Figure 1); 

 A 3-D radiance model for the lower atmosphere that utilizes spatially dependent optical properties;  

 Methods for deriving the spatially dependent optical properties from 3-D RT calculations with uniform, 

spectrally flat surfaces. 

Upper atmosphere (1-D RT)

Lower atmosphere (3-D RT)

Surface
 

Figure 1.  Partitioning of the scene into surface and atmospheric domains. 

We note that the boundary altitude between the upper atmosphere, modeled with 1-D RT code, and the lower 

atmosphere, modeled with 3-D RT, is allowed to vary with the cloud field. 

2.1 Upper/lower atmosphere radiance partitioning 

Partitioning the observed radiance into upper and lower atmospheric components allows the time-consuming lower 

atmosphere calculations to be re-used for different sensor altitudes; the path from the cloud top to the sensor, located at 

altitude h, is modeled with a fast 1-D RT calculation.  Let Lc denote the radiance at the cloud-top altitude, tcd(h) the direct 

transmittance between the cloud-top altitude and the sensor, tci(h) the indirect (diffuse) transmittance between the cloud-

top altitude and the sensor, and S(h) the path radiance between the cloud-top, z, and sensor altitudes.  All of these 

quantities are both spatially and spectrally dependent.  The radiance observed at the sensor may then be written as 

       L(h) = Lc tcd(h) + <Lc> tci(h) + S(h)      (1) 

Lc is computed as described in the following sections.  The remaining quantities may be computed using an RT code for 

horizontally uniform atmospheres such as MODTRAN
®1

 [6].  <Lc> in the second term denotes a spatially averaged 

image derived by convolving Lc with a point-spread function (PSF) describing the relative contributions from different 

parts in the scene to the diffusely transmitted radiance.  The only significant contributor to this term is Rayleigh 

scattering.  A satisfactory PSF may be obtained from the single-scattering limit, i.e., deriving the PSF from the Rayleigh 

scattering phase function [7]. The remainder of this paper concerns the calculation of Lc. 

                                                 
1  MODTRAN computer software is a registered trademark owned by the United States Government as represented by the Secretary 

of the Air Force. 



2.2 Radiance at the cloud-top altitude: solar component 

The equation for the solar radiation component of Lc, like Eq. (1), contains directly transmitted, diffusely transmitted and 

scattered radiance contributions, with the diffusely transmitted contribution containing a spatial convolution.  It is 

instructive to start with the special case of a horizontally uniform atmosphere and a Lambertian surface, where the 

radiance may be written as 

       L = a + b (td r + ti <r>)/(1-<r>σ) (2) 

Here a is the scattered path radiance term, b is the total solar flux transmitted to the ground, td is the effective direct 

transmittance between the ground and the sensor, ti is the effective diffuse transmittance between the ground and the 

sensor, σ is the atmospheric spherical albedo, r is the surface reflectance at the imaged pixel, and <r> denotes a spatially 

averaged surface reflectance derived by convolving r with a PSF.  All quantities in Eq. (2) are implicitly wavelength 

dependent, and r is spatially dependent. To model non-monochromatic in-band radiance, which does not obey Beer’s 

law strictly, “effective” transmittance is defined as the ratio of transmittances along the total sun-ground-sensor and sun-

ground paths. 

The derivation of Eq. (2) [8] presumes spatial uniformity of illumination, transmittance and scattering, which then factor 

out of PSF convolutions.  Including spatially dependent scattering, illumination, and transmittance due to clouds, but 

retaining a scene-average σ, a re-derivation yields the equation for Lc: 

       Lc = a + td [b + <rb>σ/(1-<r>σ)] r +  

                        ti<[b + <rb>σ/(1-<r>σ)] r> (3) 

In cloudy scenes ti is dominated by the cloud diffuse transmittance, which arises from various orders of scattering, each 

with its own PSF, making the net PSF spatially variable.  Convolution with a spatially dependent PSF is in general quite 

computationally intensive.  Fortunately, the dependence of the results on the PSF shape is found to be mild.  Therefore 

we can approximate the PSF with a simple blend of single-scattering and multiple-scattering PSF convolutions, the 

proportions being based on the line-of-sight (LOS) optical depth (OD) at each pixel.  For simplicity we take the 

multiple-scattering PSF to be proportional to the view factor between area elements of the ground and a surface located 

at the cloud center altitude; this represents the optically thick, physically thin limit of a non-absorbing uniform cloud.   

2.3 Radiance at the cloud-top altitude: thermal component 

The equation for the thermally emitted component of Lc (i.e., radiation not originating from the sun) contains path 

radiance and ground-reflected illumination terms, as in Eq. (3), plus direct and diffusely transmitted ground emission. 

The ground is specified by surface temperatures T as well as reflectances.  Since even a cloudy atmosphere is essentially 

non-reflective at thermal wavelengths, the spherical albedo may be neglected.  The ground thermal source is the product 

of its emissivity (1-r) and the Planck function B(T).  Therefore the thermal radiance at the cloud top altitude is given by 

      Lc = a + td rb + ti<rb> + fd B(T)(1-r) + fi<B(T)(1-r)> (4) 

Here the a term arises from thermal emission rather than scattering. We denote fd and fi as respectively the direct and 

diffuse transmittances of the ground emission up to the cloud top.  In the monochromatic limit these are identical to the 

transmittances td and ti, which pertain to the atmospheric downwelling radiance.  However, when applying Eq. (4) to in-

band quantities these sets of transmittances differ, because the spectral fine structure in the atmospheric transmission 

interacts differently with the spectrally correlated atmospheric illumination spectrum than with the much smoother 

ground emission spectrum. 

2.4 Derivation of radiation transport quantities from MCScene 

The Eq. (3) quantities are derived from MCScene calculations performed with a small set of uniform surface 

reflectances.  An analogous derivation of RT quantities is used in the FLAASH atmospheric compensation code [7], 

where the RT model is MODTRAN
®
.  Here the RT quantities are defined as 2-D maps (images) rather than single 

values.  The MCScene calculations are performed for each desired wavelength, 3-D cloud field, model atmosphere, and 

combination of solar and viewing geometries. 

One set of MCScene radiance images, for r=0.5 and 1, is calculated with the downlooking sensor placed just above the 

ground, thereby eliminating a and setting the transmittances equal to 1 in Eq. (3).  Scene-averaging the two images leads 

to a pair of equations in σ and the scene-average b, which are solved for σ.  The derived spherical albedo is used with 

Eq. (3) and the r=1 image to derive the b image.  A second set of MCScene calculations is run for r=0 and 1 with the 



sensor at the cloud-top altitude.  The former yields a, while the latter yields ti when td (a separate MCScene output) and 

the previously determined quantities are inserted into Eq. (3).   

We note that the r=1 cloud-top view depends on both the viewing and solar angles, so at first glance its calculation 

appears to be necessary for each angle combination.  However, this view is used only to derive ti, which is independent 

of the sun angle.  We find some dependence in practice; calculations of ti with a low sun tend to be less credible, perhaps 

because of greater shadowing. 

For thermal radiance modeling, the Eq. (4) quantities may be derived from four MCScene calculations.  Two are for r=0 

and r=1 from the cloud top with a cold (T=0) ground; one is for r=0 from the cloud top with a warm (e.g., ambient 

temperature) ground, and one is for r=1 from just above a cold ground.  The solar angle is irrelevant in these 

calculations. 

The remainder of this paper will focus on the solar wavelength region. 

3. COMPUTATION PROCEDURE 

3.1 Photon noise suppression 

The main limiting factor in the MCScene calculation accuracy is statistical noise, which scales inversely with the square 

root of the number of Monte Carlo “photons”.  A clean-looking MCScene image (signal to noise of tens to 100) requires 

~10
4
 photons/pixel, which for a 500x500-pixel cloud field requires ~10 hours of computations on our dedicated 

multiprocessor system.  However, we have found that for a spatial resolution of tens of meters comparably accurate 

results can be obtained with only 100 photons/pixel by fusing the output with cloud OD images.  The fusion method 

involves spatial smoothing followed by insertion of high-resolution structure from a “reference” image using a local 

linear regression algorithm [9].  We have previously used a related method for MCScene image enhancement in which 

the reference image is surface reflectance [10].  For the views from ground level, an appropriate reference image for 

solar wavelength calculations is the solar LOS direct transmittance, exp(-OD), which renders the cloud shadows.  For the 

a image, i.e., r = 0, the reference is the sensor LOS OD, while for the r=1 image at the cloud top the reference is an 

analytical approximation to Eq. (2) that uses both sensor and sun LOS ODs. 

3.2 Hyperspectral sparse sampling 

When the MCScene cloud field calculations are performed for hundreds of narrow wavelength bands and a principal 

component analysis is performed, the spectral dimensionality of the image stack is found to be very low, around 2 to 3.  

This implies that the image at any arbitrary wavelength can be reconstructed from linear combinations of images at just a 

few wavelengths.  We have found that the combination coefficients and a constant term can be derived via linear 

regression from 1000 photon/pixel spectral calculations for a few hundred pixels covering the sensor and sun LOS OD 

ranges.  In particular, we have found that satisfactory cloud field images can be obtained throughout the solar 

wavelength region at hyperspectral resolution using full image calculations performed at only two wavelengths, 1.65 µm 

and 2.1 µm. 

3.3 Cloud field models 

We have employed two types of cloud models in our simulations to date.  The numerical Cloud Scene Simulation Model 

(CSSM) developed by Cianciolo and Raffensberger [11] provides semi-empirical, time-dependent voxelized 3-D 

descriptions for a variety of cloud field types.  We used the model to generate cumulus, altostratus and cirrus cloud fields 

at 20 m spatial resolution.  The CSSM specifies the liquid water content in each cloud-containing atmospheric voxel, but 

for the simulations reported here we specified a fixed water content, and hence a fixed 550 nm OD, in all cloud voxels.   

For a more realistic appearance we have also derived cloud fields from imagery, using Landsat-7 measurements over 

water with the CSSM as a guide.  Very briefly, the procedure involves the following steps: 

 Estimating an altitude range for the cloud tops based on a CSSM calculation; 

 Estimating a cloud top altitude for each cloudy pixel by linearly mapping the Landsat-7 LWIR brightness 

temperature image onto the cloud top altitude range, consistent with the assumption of a constant atmospheric 

lapse rate; 



 Estimating a cloud bottom altitude for each cloudy pixel using a CSSM-based relationship between cloud top 

and bottom altitudes; 

 Choosing a voxel OD that reasonably models the Landsat-7 cloud brightnesses and shadow depths in a visible 

scene simulation. 

MCScene uses the cloud model databases in MODTRAN
®
 to assign a phase function and extinction and scattering cross 

sections to the cloud voxels.  A standard MODTRAN
®
 model atmosphere, which defines the upper atmosphere and 

overlays the cloud field in the lower atmosphere, is chosen to complete the specification of all optical properties required 

for MCScene. 

4. EXAMPLE RESULTS AND CONCLUSIONS 

Our initial work focused on developing and validating the scene-building procedure based on Eq. (3).  Then we 

assembled a library of results from 100 photon/pixel MCScene calculations at 20 m pixel resolution for several different 

cloud types, viewing and sun elevation angles and relative azimuth angles.  The library data were combined with 

multispectral or hyperspectral surface reflectance images to generate scenes viewed from the cloud tops.  A few example 

scenes are presented here.  The images were generated from apparent spectral reflectance values (spectral radiance 

divided by the solar function) using ENVI (Environment for Visualizing Images) software. 

Figure 2 illustrates the simulation of a nadir view of Sacramento, CA for the 1.65 µm band with a CSSM altostratus 

cloud field.  The sun is low, 15° above the horizon, and the observer is at the cloud-top altitude of 3 km.  The library 100 

photon/pixel MCScene cloud field simulation for r=1 is at top left.  The result after noise suppression is at top right, and 

the noise-suppressed simulation for r=0 is at lower left.  The scene at lower right was generated by combining the cloud 

field calculations with a Landsat-7 image converted to reflectance using FLAASH [6,7].   

    

    
 

Figure 2.  Simulation of a cloudy scene for Sacramento, CA at 1.65 µm.  
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A direct MCScene “truth” calculation of the above scene was then made using 10,000 photons/pixel, and the results 

were compared. Visually the two images are almost identical, the main difference being the presence of a small amount 

of Monte Carlo noise in the “truth”. The RMS difference is very low, 0.018 apparent reflectance units, and this drops to 

0.013 with 3x3-pixel smoothing, which suppresses Monte Carlo noise.   

Figure 3 at left shows a simulated nadir view of Tampa Bay near Bradenton, FL in visible true color (grayscale in the 

hardcopy paper).  This scene combines a FLAASH-processed AVIRIS image [12] with a Landsat-derived cumulus cloud 

field.  The sun elevation angle is 45°. The original Landsat scene, taken over the Pacific Ocean with a slightly higher sun 

angle, is shown at right.  Modest differences in cloud shading and different locations of the cloud cast shadows result 

from the angle difference, and the brightest Landsat clouds are affected by sensor saturation.  Nonetheless, the 

simulation is seen to represent the original cloud field with good fidelity. 

     

Figure 3.  At left, synthetic visible (red-green-blue) image of Tampa Bay, FL; at right, original cloud-containing Landsat 

image over the Pacific Ocean. 

Figures 4a-d show some simulated slant views of Tampa Bay looking towards the sun (180° relative azimuth angle).  

Since water is not well represented by the model’s Lambertian surface assumption, an approximate treatment of water 

glint is included.  Figures 4a-c use the same cloud field as in Figure 3.  A low sun elevation angle of 15° yields a very 

high contrast scene, with large cloud forward scattering, a very dim surface, and yellowish lighting.   Figures 4b-d use a 

sun elevation angle of 45°.  In Figure 4c, constructed from infrared bands, there is higher contrast than in the visible due 

to lower aerosol scattering and darker water at these longer wavelengths.  Finally, Figure 4d shows a variant of the 

Figure 4c scene with a Landsat-derived cirrus cloud field. 

The current results indicate that this fast cloudy scene simulation method should have more than enough accuracy and 

wavelength versatility to address a wide range of system design and evaluation applications.  In addition, it may be 

useful for developing algorithms for remote sensing of surface, cloud and atmospheric properties from multispectral or 

hyperspectral imagery under cloudy conditions. Further work is underway to exercise the method over a wider variety of 

viewing geometries, wavelengths, and atmospheric conditions, and to validate the model for thermal emission. 



 

 

 

 

Figures 4a-d.  Synthetic images of Tampa Bay for a 15° view elevation angle and a 180° relative azimuth angle between the 

observer and the sun.  From top to bottom, (a) visible (red-green-blue) wavelengths, sun elevation angle = 15°, Figure 3 

cloud field; (b) as in 4a but with sun elevation angle = 45°; (c) as in 4b but in the infrared (R,G,B = 1.04, 1.64, 2.09 µm); (d) 

as in 4c but with a cirrus cloud field. 
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