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ABSTRACT 

The QUAC (Quick Atmospheric Correction) algorithm for in-scene-based atmospheric correction of VIS-SWIR 
(VISible-Short Wave InfraRed) Multi- and Hyperspectral Imagery (MSI and HSI) is reviewed and applied to 
radiometrically uncalibrated data.  Quite good agreement was previously demonstrated for the retrieved pixel spectral 
reflectances between QUAC and the physics-based atmospheric correction code FLAASH (Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes) for a variety of HSI and MSI data cubes.  In these code-to-code 
comparisons, all the data cubes were obtained with well-calibrated sensors.  However, many sensors operate in an 
uncalibrated manner, precluding the use of physics-based codes to retrieve surface reflectance. The ability to retrieve 
absolute spectral reflectances from such sensors would significantly increase the utility of their data.  We apply QUAC 
to calibrated and uncalibrated versions of the same Landsat MSI data cube, and demonstrate nearly identical retrieved 
spectral reflectances for the two data sets.   
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1. INTRODUCTION 

If a spectral imaging sensor is radiometrically uncalibrated and/or poorly spectrally calibrated, first-principles 
atmospheric correction methods cannot be used to retrieve surface reflectances.   The only recourse is to make 
assumptions about the spectral properties of the scene or about the materials within it.  For example, assumptions may be 
made about the minimum spectral reflectance value (i.e., zero) and either a maximum value, such as unity for bright 
Lambertian surfaces or thick clouds1, or assumed values for an identifiable reference spectrum. With this information 
one may derive a linear transformation, consisting of a spectral gain and offset, that only very approximately converts the 
data values to spectral reflectance.  However, maximum reflectance values in real scenes can vary considerably, 
depending on the scene composition, pixel size, the presence of solar glints and the dynamic range of the sensor, which 
may saturate on bright materials.  Similarly, the spectral reflectance of identified reference materials in a scene can often 
vary considerably and unpredictably from their library reference values depending on environmental conditions (aging, 
surface contamination, etc.) and illumination factors (bi-directional reflectance function effects, for example). 

Previously, Bernstein et al.2,3 showed that reflectance may be reasonably estimated from the statistical properties of 
diverse, non-vegetated pixels in an image selected by an automated endmember algorithm.  In their original QUAC 
method, each offset-subtracted spectral channel is scaled by dividing by the endmember standard deviation.  This 
procedure relies on the empirical observation that the reflectance standard deviation of a collection of diverse, non-
vegetated materials tends to be spectrally flat.   

The current paper reviews modifications to the QUAC method4, yielding improved accuracy in the retrieved 
reflectances, in which an endmember mean spectrum rather than a standard deviation spectrum is used to define the 
scaling.  We have observed that the mean of the endmember reflectance spectra, while not flat, tends to be quite 
consistent between reasonably complex land scenes and quite robust with respect to the number of endmembers selected 
and the details of the endmember selection method.  In our typical test cases, mean reflectance errors in comparisons 
between the QUAC and FLAASH results5-7 with this new method are found to be ~ ±15% (rms over all the spectral 
channels).  In these code-to-code comparisons, all the data cubes were obtained with well-calibrated sensors. However, 
many sensors operate in an uncalibrated manner, precluding the use of physics-based codes to retrieve surface 
reflectance. The ability to retrieve absolute spectral reflectances from such sensors would significantly increase the 
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utility of their data.   The applicability of QUAC to completely uncalibrated data is the focus of this work.  We apply 
QUAC to calibrated and uncalibrated versions of the same Landsat MSI data cube.  Starting with a well-calibrated 
Landsat data cube, we applied a linear transformation, consisting of a different gain and offset, to each spectral band to 
produce radiometrically uncalibrated data.  QUAC was then applied to both the calibrated and uncalibrated data, and 
very close agreement (to within ~±2% rms over all the spectral channels) was found between the retrieved reflectance 
cubes.  While we focus here on an MSI example, comparable results have been obtained for an AVIRIS HSI data cube. 

2. OVERVIEW OF QUAC APPROACH 

We present an overview of the QUAC method; a more detailed discussion can be found elsewhere.4  Like the Empirical 
Line Method8, QUAC assumes a linearized radiation transport equation in which data values are transformed to 
reflectance spectra via a spectral offset, or baseline, and a gain spectrum.  In a scene of typical complexity and high to 
moderate (up to ~30 m) spatial resolution, it is very likely that near-zero reflectance values exist in each spectral channel, 
corresponding to the minimum data values in the scene (excluding corrupted or “bad” pixels). These minimum values, 
which typically occur with shadow, water bodies or dark green vegetation, determine the baseline. 

Once the baseline is subtracted from the data, the remaining quantity to be determined is the gain spectrum.  In QUAC, 
the gain spectrum is derived by comparing a statistic of the data with the same statistic applied to reflectance spectra. 
Spectral means, standard deviations or other statistics of the full scene are not suitable, as they are highly dependent on 
the relative abundances of the various types of materials and terrain.  On the other hand, statistics derived from a 
spectrally diverse pixel subset avoid this problem, as long as a sufficient number and variety of such pixels are present.   

In the current QUAC algorithm, the relative gain spectrum is taken as the ratio of a mean of reflectance endmembers to a 
mean of data endmembers.  Reflectance means computed from endmembers of a diverse, artificial reference “scene” are 
shown in Figure 1. This reference scene is a collection of 195 material reflectance spectra with green vegetation 
excluded.  The spectra consist of the Johns Hopkins University libraries9 of soils, terrestrial coarse-ground minerals, and 
manmade materials, augmented by dry vegetation spectra compiled by Elvidge10.  The spectra were resampled to 
AVIRIS sensor wavelengths, and endmembers were selected using the automated SMACC (Sequential Maximum Angle 
Convex Cone) method11 employing positivity and sum-to-unity constraints.  To save computation time, and to enable 
operation with multispectral sensors having as few as four spectral channels, subsets of between four and six “window 
region” spectral channels were used in the endmember selection.  The number of spectral channels used does not limit 
the number of endmembers that SMACC can retrieve. 
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Fig. 1.  Normalized mean spectra of endmembers selected from a 195-material library.  Different numbers of endmembers 
(30 or 60) and different wavelength channels were used for selection.  AVIRIS channels are at 500, 863, 1027, 1246, 
1612 and 2150 nm; QuickBird channels are located at 485, 560, 660 and 830 nm. 



 
 

 

As shown in Figure 1, the mean of the endmember reflectance spectra is found to be remarkably insensitive to the 
number and location of the spectral channels and the number of selected endmembers over fairly wide ranges, 
particularly if the curves are normalized to the same magnitude.  With around 20 endmembers or less, statistical 
fluctuations appear, and around 80 endmembers or more, the material abundances in the scene become important.  If a 
major material type, such as dry vegetation, is absent from the scene, the mean is more significantly affected.  The 
similarity of the curves in Figure 1 suggests that, in scenes containing all material types, a “universal” mean reflectance 
spectrum can serve as a reasonable reference for the gain computation.  However, to account for subtle dependences of 
the mean reflectance spectrum on the specific sensor channels and to allow customization of the reference scene, the 
current QUAC algorithm calculates this reference spectrum on the fly as part of the data analysis.  The default reference 
“scene” is the 195-member reflectance library described above. 

Prior to finding the data endmembers, the data are normalized to relative apparent reflectance by dividing by the solar 
function.  This normalization step improves the correspondence between the data endmembers and reference scene 
(reflectance) endmembers by providing a more uniform weighting of the data at different wavelengths. 

The absolute magnitude of the relative gain spectrum, which determines the absolute magnitude of the reflectances, can 
be estimated by several methods.  If the sensor has an accurate radiometric calibration at an infrared “window” 
wavelength such as ~2.2 μm, where atmospheric transmittance is typically ~90% or greater, the magnitude can be set to 
match the reflectance to the apparent reflectance. This is readily calculated from the solar irradiance function and the 
presumably known solar elevation angle.  Otherwise, the magnitude may be estimated by fixing the reflectance value of 
an identifiable surface material, such as vegetation, at one (or more) wavelengths.  In the present algorithm, vegetation 
pixels with an NDVI of greater than 0.7 are selected and their ~0.83 μm reflectance average value set to 0.4.  If minimal 
vegetation is present, the absolute gain spectrum is based on the reference endmember average. 

There is no rigorous theoretical underpinning for QUAC.  However, we can provide a qualitative explanation for why it 
works.  The scene-derived endmembers tend to uniformly sample a wide range of material reflectance values (i.e., dark 
to bright) for each spectral channel.  The endmember-averaged material reflectance spectrum is insensitive to the scene 
specifics, as long as the scene contains enough diverse pixel spectra to span the reflectance range for each spectral 
channel.  The shape of the endmember reference reflectance spectrum is controlled by stronger material absorption 
features at either end of the spectrum, IR absorption bands at the red end and electronic absorption bands at the blue end. 

Example comparisons of QUAC to FLAASH for well-calibrated HSI and MSI data sets are presented in Figure 2.  In the 
following section, we investigate the level of degradation of the QUAC results when it is applied to uncalibrated data. 

 
 
Fig. 2. Comparisons of QUAC (dashed lines) and FLAASH (solid lines) reflectance spectra for the HSI AVIRIS (top) and 

MSI Landsat7 (bottom) data sets. 

 

 



 
 

 

3. APPLICATION OF QUAC TO UNCALIBRATED DATA 

This study was performed with Landsat7 data of the area around Davis, CA, which is rendered as an RGB composite 
picture in Figure 3.  The data, in six bands from 450-2500 nm at a GSD (Ground Sample Distance) of ~30 m, were 
obtained with the ETM+ sensor. Example data spectral curves, spanning the full intensity range of the scene, are 
presented in Figure 4.  The lower spectral curve corresponds to the darkest material, which for this scene is defined by 
the water body in the upper right hand corner of the image.  The upper spectral curve corresponds to the brightest feature 
for each channel, which likely originates from the bright and white man-made structures.  An uncalibrated version of this 
data was simulated by applying very different gains and offsets to each spectral channel.  The result is shown in Figure 5.   
By comparison to Figure 4, it is seen that the uncalibrated data bears no obvious resemblance to the calibrated data.  We 
also deleted the blue Landsat channel centered on ~450 nm from our simulated uncalibrated sensor data, as many 
multispectral sensors do not contain channels below ~500 nm.   

An unforeseen consequence of the particular transform used to produce the uncalibrated data is the steep increase in 
intensity for all the pixels in going from ~650 to 800 nm.  This resulted in a situation where every pixel appeared to have 
a strong red edge and was therefore flagged by QUAC as a vegetation pixel. Vegetation pixels are not considered for 
endmember selection in QUAC.  In order to remedy this situation, a “correction” transformation was sought that enabled 
the vegetation spectrum to be differentiated from non-vegetation spectra.  The approach adopted was to define this linear 
transform by an offset corresponding to the darkest value for each channel and a gain corresponding to the inverse of the 
brightest value for each channel.  This transform results in a very approximate correction of the data to spectral 
reflectance, one that is much less accurate than the QUAC result.  However, as seen in Figure 6, it is sufficient to 
separate the vegetation from the non-vegetation spectra.  After application of this vegetation-pixel identification method, 
the standard QUAC algorithm was then applied to the uncalibrated data.  The resulting reflectance spectra are compared 
to those obtained from the calibrated data in Figure 7.  The differences are minor, and are attributed to differences in the 
endmembers selected for each data set. 

 
 

Fig. 3. RGB composite of Landsat7 data in the vicinity of Davis, CA.  The image is ~ 65 km wide. 

 
 

Fig. 4.  Sample spectra for the calibrated Landsat7 data indicating the upper and lower spectral envelopes. 



 
 

 

 

 
 

Fig. 5. Same sample spectra as in Figure 4 but after the application of a linear transformation to simulate uncalibrated 
Landsat7 data. 

 
 

Fig. 6. Same sample spectra as in Figure 5 but after application of a linear transformation to enable identification of 
vegetation spectra via the strong red edge feature around ~750 nm.  An example vegetation spectrum is highlighted by 
the thick pink curve. 

 
 

Fig. 7.  Comparison of QUAC-retrieved reflectances for the calibrated and uncalibrated Landsat7 data. 



 
 

 

4. CONCLUDING REMARKS 

Because QUAC is based on a linear transformation derived solely from the data itself, it is essentially invariant to any 
additional and arbitrary linear transform applied to the data.  Therefore, it is not surprising that QUAC performs 
comparably well on calibrated and uncalibrated data.  Nevertheless, it proved a worthwhile exercise to demonstrate this 
point, as it revealed other problems with the application of QUAC to uncalibrated data, namely the issue of vegetation 
removal.  While this study focused on radiometrically uncalibrated data, QUAC will also work well with radiometrically 
calibrated and uncalibrated data with poor spectral calibration.  However, some approximate knowledge of the 
correspondence between channel number and wavelength is required in order to determine which channels are to be used 
for vegetation removal, as well as to allow a meaningful interpretation of the results. 

We anticipate implementing a number of upgrades to QUAC over the next year, including: 

• Improving the absolute accuracy of the retrieved reflectances by comparison of the endmembers to a 
reference material library, 

• Applying QUAC to non-ideal viewing conditions, such as under complete cloud cover and to cloud-
shadowed regions, and 

• Applying QUAC to sensors that do not contain visible channels, which requires implementation of a new 
vegetation removal algorithm based on the NIR-SWIR (~0.9-2.5 μm) spectral domain. 
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