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ABSTRACT  

Processing long-wave infrared (LWIR) hyperspectral imagery to surface emissivity or reflectance units via atmospheric 
compensation and temperature-emissivity separation (TES) affords the opportunity to remotely classify and identify 
solid materials with minimal interference from atmospheric effects.  This paper describes an automated atmospheric 
compensation and TES method, called FLAASH®-IR (Fast Line-of-sight Atmospheric Analysis of Spectral Hypecubes – 
Infrared), and its application to ground-to-ground imagery taken with the Telops Inc. Hyper-Cam interferometric 
hyperspectral imager.  The results demonstrate that clean, quantitative surface spectra can be obtained, even with highly 
reflective (low emissivity) objects such as bare metal and in the presence of some illumination from the surroundings.  In 
particular, the atmospheric compensation process suppresses the spectral features due to atmospheric water vapor and 
ozone, which are especially prominent in reflected sky radiance.   
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1. INTRODUCTION  
Hyperspectral imaging (HSI) technology provides a wealth of information for remotely identifying and characterizing 
surface materials and objects based on their spectral signatures.  Long-wave and mid-wave infrared (L/MWIR) HSI 
sensors can yield both surface emissivity spectra and temperatures, provided that the corrupting effects of the atmosphere 
can be removed and the surface-leaving radiance factored into emissivity and Planck function components.  The 
important atmospheric effects in the thermal infrared are absorption, thermal emission (path radiance), and reflected 
environmental illumination, which for upward-facing surfaces is dominated by skylight.  Since precise knowledge of the 
atmospheric conditions is not generally available, the atmospheric description must be retrieved from the image itself.  
Removal of the atmospheric components is commonly called atmospheric compensation or correction, while the 
emissivity factorization is called temperature/emissivity separation (TES).   

In general, atmospheric compensation methods for the L/MWIR are less well established and general than methods for 
the visible-shortwave IR region1 because of the added complexity introduced by thermal emission.  The atmospheric 
compensation is formally an underdetermined problem:  the atmospheric parameters are usually unknown, and the 
emissivity spectrum for a given pixel is presumably unknown as well, so there are more unknowns than available 
spectral channels.  Therefore, solutions to the atmospheric compensation and TES problems require some constraints on 
the spectrum and the atmospheric representation.   

A variety of atmospheric compensation algorithms for the LWIR based on different assumptions and mathematical 
methods have recently been developed. Gillespie et al.2 developed an algorithm that uses independent measurements of 
the atmospheric temperature and water vapor column densities.  LWIR hyperspectral algorithms have been developed by 
Young et al.3 and Gu et al.4 that do not require ancillary information but do require the presence of a sufficient number 
of materials with unit emissivity in certain wavelength regions.  Those two methods allow the retrieval of atmospheric 
transmission and path radiance information, but they do not treat the downwelling illumination and thus they are 
inaccurate for reflective (low emissivity) surfaces.  Other algorithms rely on empirical relationships between emissivity 
spectral differences and mean or maximum emissivities.5  These methods work well for natural materials but fail for 
metallic and other man-made materials.  Hernandez-Baquero and Schott6 developed a linear algebraic emissivity and 
temperature retrieval method that can be applied to arbitrary surfaces but is somewhat limited in the variety of materials 
and atmospheric conditions that can be handled.  Boonmee et al.7 developed a complex algorithm that incorporates 
features from many earlier papers. 
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A hyperspectral TES approach that is suitable for materials with arbitrary emissivity was developed by Borel8 based on 
the straightforward concept of maximizing emissivity spectral smoothness.  A follow-up study by Ingram and Muse9 
found this method to be robust to sensor noise and the presence of emissivity spectral features.  Borel’s approach was 
later extended to atmospheric retrieval along with TES.10  In this paper, we describe another smoothness-based 
automated atmospheric compensation and TES method, called FLAASH-IR (Fast Line-of-sight Atmospheric Analysis of 
Spectral Hypecubes – InfraRed), and its application to data taken with the Telops Inc. Hyper-Cam interferometric 
hyperspectral imager.  We include an approximate treatment of the illumination of non-horizontal surfaces by the 
surrounding ground.   The FLAASH-IR processing is found to almost entirely suppress the atmospheric features present 
in the radiance spectra, yielding surface reflectances that are consistent with laboratory measurements on similar 
materials. 

2. ANALYSIS OVERVIEW 

The LWIR spectral radiance measured by a sensor viewing objects on the ground can be written as 

             Lobs(λ) = B(T, λ)ε(λ)τ(λ) + [1 - ε(λ)]L↓(λ) + L↑(λ) (1) 

where λ is wavelength, ε(λ) is the composition- and temperature-averaged emissivity of the surface pixel, τ(λ) is the 
total (diffuse plus direct) transmittance between the surface and the sensor, B(T, λ) is the surface Planck blackbody 
function at temperature T, L↓(λ) is the incident illumination, and L↑(λ) is the atmospheric path radiance. L↑(λ) and τ(λ) 
are typically dominated by gases but may also include a scattering component.  L↓(λ) includes the atmospheric 
absorption between the surface and the sensor; i.e., it represents the at-sensor radiance originating from a hypothetical 
unit reflectance surface.  τ(λ), L↓(λ) and L↑(λ) may be simulated for a given set of atmospheric properties using a 
radiation transport model such as MODTRAN®.11 The surface temperature, T, is effectively an emissivity-weighted 
average within each pixel.  Eq. (1) is rigorous for Lambertian surfaces; for specular surfaces the emissivity and 
illumination quantities may be regarded as “effective.” 

For hyperspectral sensors, the spectral channels are typically narrow enough that within-channel variations in emissivity 
and the blackbody function can be neglected.  Therefore the atmospheric radiance and transmittance parameters in Eq. 
(1) are convolved with the wavelength response functions and assigned to their center wavelengths. 

2.1  Temperature and Emissivity Separation (TES) 

For a given model atmosphere defining the transmittance, path and illumination radiances, Eq. (1) leads to a family of 
emissivity spectrum solutions corresponding to a range of possible surface temperatures:   

                              ε = (L - L↓- L↑) / (B(T)τ - L↓) (2)  

The quantities in Eq. (2) are implicitly wavelength dependent.   

According to the smooth-emissivity criterion, the most likely solution is the one with the least spectral fine structure.  A 
useful measure of emissivity fine structure is the mean square residual between the emissivity spectrum and the same 
spectrum smoothed by taking a running average over some number of adjacent spectral channels, denoted as <ε>.  A 
better measure, which is adopted in FLAASH-IR, is obtained by inserting <ε> into Eq. (1) and taking the mean square of 
the difference between the computed radiance and the original data: 

                                      σ2 = [Lobs - L(<ε>)]2   (3) 

where 

     L(<ε>) = B(T) <ε>τ + (1 - <ε>)L↓+ L↑ (4) 

and the underline denotes the running average.  The TES is performed by finding the minimum of σ2 with respect to 
temperature. An advantage of this measure is that it is uniformly weighted across all wavelengths, regardless of 
atmospheric optical depth.  This allows one to include optically thick spectral regions, where the emissivity is poorly 
determined but there is valuable information for retrieving atmospheric parameters, as described in the next section.  The 
unsmoothed emissivity spectrum from Eq. (2) rather than the smoothed spectrum is reported as the retrieval result in 
order to retain true spectral fine structure. 



The smooth-emissivity criterion can be derived from the weaker assumption that emissivity structure is uncorrelated with 
atmospheric features.  We write σ2 as  

                              σ2 =  Dtot
2 = (De + Da)2 = (De

2) + (Da
2) + 2(DeDa)   (5) 

where Dtot = Lobs - L(<ε>), De is the spectral residual due to emissivity fine structure, and Da is the spectral residual 
associated with imperfect atmospheric compensation (i.e., due to model error and/or surface temperature error).  The 
third term accounts for correlation between De and Da.  De and Da are vectors in the space of spectral channels, with a 
random relative orientation since their spectra are uncorrelated.  If the number of channels is large, the space is of high 
dimension and probability favors a very small correlation term.  Since (DeDa) is very small and (De

2) is constant, 
minimizing σ2 effectively minimizes the mean square atmospheric compensation residual (Da

2).  Therefore accurate 
surface temperatures are obtainable even in the presence of substantial emissivity spectral structure De. 

FLAASH-IR contains some refinements of the σ2 calculation that reduce its sensitivity to sensor artifacts.  Among the 
most serious problems are uncertainties in wavelength calibration and the instrument function.  Several strategies are 
invoked to minimize this.  One is to use a wide smoothing window of around ~0.3 µm (typically ~7 channels), and 
another is to combine this with 3-channel averaging that is applied to both the unsmoothed and smoothed emissivities 
before taking the difference.  These steps cause σ2 to emphasize coarser spectral features that are less wavelength-
sensitive.  The TES generally benefits from restricting the spectral region of interest to the ~9-10.2 µm region around the 
ozone band, whose presence in the surface spectrum directly correlates with reflectance.  However, the full ~8-13 µm 
atmospheric window region is used for atmosphere retrieval, discussed below, as the water vapor features it contains are 
needed to characterize the water column density and the lower atmospheric temperature. 

2.2  Atmosphere and Emissivity Retrieval 

The σ2 minimization approach discussed above is also used to retrieve atmospheric parameters for the scene.  We 
assume that the image dimensions are small enough that a single, homogenous atmosphere suffices.  Radiation transport 
model calculations of τ(λ), L↓(λ) and L↑(λ) depend on the assumed atmospheric species and temperature profiles.  The 
challenge is to devise a family of plausible and sufficiently varied trial atmospheres that can be specified with a small 
number of variables.   

If we consider the 8-13 µm spectral region and a sensor located within a few km of the ground, the most prominent 
atmospheric species is water vapor, and the key variables for the transmittance and path emission are the column water 
vapor and the air temperature near the ground.  In the absence of clouds, the sky downwelling illumination is composed 
primarily of water vapor emission, which is controlled by these same variables, plus ozone band emission from the upper 
atmosphere.  The latter can be controlled by specifying the column ozone and/or the upper atmospheric temperature.  
Unless otherwise noted the sky is assumed to be cloud-free.  Effects due to clouds, the ground, or other blackbody-like 
sources of illumination are discussed in the next section. 

In FLAASH-IR a set of trial atmospheric spectra is calculated by specifying a three-dimensional grid of atmospheric 
parameters (e.g., surface air temperature, water vapor column density or relative humidity, and an ozone column density 
scale factor).  The parameters are used to modify a built-in MODTRAN model atmosphere, which may be selected by 
latitude and season.  A tabulation of τ(λ), L↑(λ) and L↓(λ) spectra (which we refer to as a Transmittance, Upwelling, 
Downwelling Look-Up Table, or TUD LUT) is derived from outputs of MODTRAN5.  Polynomial fitting is used to 
interpolate the spectra between the grid points.   

The best-fit atmosphere model is retrieved from selected pixel spectra by minimizing the total σ2 with respect to both 
surface temperature and the atmospheric variables.  The selected pixels, typically around 10-20, are chosen to be diverse 
in brightness and spectral shape, so that different temperatures and materials are represented.  In contrast to most other 
atmospheric compensation methods, it is desirable to include low emissivity (reflective) materials, such as metals, as 
they provide atmospheric downwelling radiance information.  The σ2 minimization involves one-dimensional surface 
temperature searches for the selected pixels, which are embedded within a three (or more)-dimensional atmosphere 
search conducted using a downhill simplex method.12  Finally, the retrieved atmosphere is used together with the one-
dimensional search to derive surface temperature and emissivity (or reflectance, r = 1-ε) for the entire image.   



Because the atmospheric radiance features are sharp, any wavelength miscalibration leads to atmospheric residuals in the 
emissivity spectra.  FLAASH-IR provides an automated calibration option in which a wavelength shift and stretch and a 
resolution scaling factor are included in the atmosphere search and retrieved as part of the σ2 minimization.  The revised 
wavelength scale is output with the emissivity or reflectance image. 

Further refinement of the results can be performed with a spectral “polishing” option.  The method is a generalization of 
that employed in the HATCH visible-shortwave IR atmospheric compensation code13, where smoothed reflectance 
spectra are used to recalculate the atmospheric transmission from the radiation transport equation. In FLAASH-IR the 
smoothed emissivity spectra from the selected diverse pixels are used, and up to all three atmospheric components, τ(λ), 
L↑(λ) and L↓(λ), are recalculated using a least-squares method.  

2.3  Enhanced Illumination Modeling 

Improved modeling of the illumination L↓(λ) can often be achieved by using a blend of clear sky illumination and a 
blackbody-like environmental radiance.  That is, the clear sky illumination, weighted by f, representing an effective 
angular fraction of the sky hemisphere, is combined with a blackbody term weighted by 1-f.  This approach allows 
quantitative reflectances to be extracted from cloudy scenes, and can also compensate for emission from ground objects, 
which becomes important in horizontal and near-horizontal views.  However, in the latter situation the sky fraction is 
dependent on surface orientation, so there is no single correct value for all surfaces in the scene.  Inclusion of the 
blackbody radiance tends to have a minor effect on the shape of the reflectance spectrum, although the amplitude will 
vary. We demonstrate the latter point analytically in the approximation that the environmental and surface Planck 
functions are equal.  In this case we replace L↓ in Equation (1) with L↓′, given by 

     L↓′ = f L↓ + (1-f) [B(T)(1-r′)τ + L↓r′] (6) 

where r = 1-ε is the surface reflectance and r′ is an effective environmental reflectance, included here for generality but 
typically very small (~0.1 or less).  The result is a modified version of Equation (1), 

     Lobs = B(T)[1-fr-(1-f)rr′]τ + [fr+(1-f)rr′] L↓ + L↑ (7) 

in which the retrieved reflectance is fr+(1-f)rr′.  For r′<0.1 the result is very close to fr.  Thus, if the blackbody-like 
illumination is ignored the retrieved reflectance is reduced from its true value, r, by a factor equal to the clear sky 
fraction.   

3. EXPERIMENT 

The Telops Inc. Hyper-Cam LW is a portable imaging Fourier transform spectrometer operating in the 8-12 μm 
longwave infrared (LWIR) spectral range.  The detector is a 320x256 PV-MCT focal plane array detector that can be 
windowed and formatted to fit the desired image size and to decrease the acquisition time. The pixel IFOV is 0.35 mrad, 
and spectral resolution is user selectable from 0.25 to 150 cm-1. The Hyper-Cam LW has been used in several ground-
based field campaigns, including the demonstration of standoff chemical agent detection.  More recently, the Hyper-Cam 
has been integrated into an airplane to provide airborne measurement capabilities.  

Here we present results from an outdoor experiment in which a variety of mineral samples and two flat panels were 
placed on the ground at a distance of 30 m from the sensor.  Behind the sensor was a low building.  The minerals include 
a quartz monocrystal and several silicates and carbonates; the panels are a near-blackbody black painted panel and a 
lightly sandblasted aluminum sheet.  The panels were propped up to face the sensor and tipped slightly backward to 
reduce the influence of nearby ground illumination.  Spectral radiance images of the scene were taken at 4 cm-1 
resolution, unapodized.   

Figure 1 shows a 100x320 pixel false color image generated using ENVI (Environment for Visualizing Images) software 
with square root scaling and some contrast enhancement.  The image is free of obvious artifacts, such as striping, 
blurring or noise. The aluminum panel, the quartz monocrystal sample at far right and the fence in the background are 
very dark because of their low emissivities.  The leaves are also fairly dark because of their relatively low temperature, 
within a few degrees of ambient.   



 
Figure 1.  Radiance image of the mineral scene in false color (RGB = 8.22, 9.52, 11.32 µm).  Large rectangular panels are 
aluminum (left) and black painted (right).  Green object at far left is a leafy branch.  Dark line across the top is the bottom of 
a metal fence in the background. 

FLAASH-IR was run on these data using a base US Standard model atmosphere, 1 cm-1 resolution MODTRAN 
calculations, and a spectral polishing option.  The diverse pixels for the atmosphere retrieval were selected with the aid 
of an automated endmember code.14  A wide range of atmospheric water vapor was chosen initially and then narrowed 
down in a second iteration to achieve slightly better polynomial fits to the MODTRAN outputs.  The results were output 
in units of reflectance versus wavelength for comparison with material library spectra provided in ENVI. 

4. RESULTS 

Our first result was obtained by ignoring non-sky illumination (i.e., f=1). Figure 2 shows the FLAASH-IR spectral 
reflectance image using the same color scheme and square root scaling as in Figure 1.  In contrast to the thermal radiance 
image, the reflectance image has the qualitative appearance of a visible photograph, and we have found this to be 
typically the case with FLAASH-IR outputs.  This is partly due to the similar reflectivities of some common materials, 
such as metals (high) and vegetation (low), across the visible and LWIR.  In addition, in both wavelength regimes the 
reflectance image has similar sensitivity to surface orientation relative to the sky, with highlights and shadows appearing 
on surfaces that face upwards or downwards, respectively.  Since sky illumination in the LWIR is diffuse, the visible 
analogue is an overcast sky.  

 
Figure 2.  FLAASH-IR reflectance image in the Figure 1 false color scheme. 

A typical reflectance spectrum of the aluminum panel from this calculation is shown in the first panel in Figure 3.  It is 
reasonably smooth and flat, and averages around 0.66.  The actual reflectance of the panel is not known, but typical 
values for aluminum in the LWIR are between 0.8 and 0.95, depending on the surface roughness and degree of 
oxidation.  Since the panel is in a near vertical orientation, we ascribe the smaller observed value to environmental 
illumination from the nearby ground and building.   

Next, we performed a couple of additional calculations using less than full sky fractions to account for the environmental 
illumination.  For simplicity this source was represented by a blackbody at 295K, selected to be somewhat below the 
likely surface temperatures to account for an average emissivity below unity.  A reasonable reflectance for the aluminum 
panel, averaging around 0.85, was obtained using f=0.8.  The spectrum is compared with that from the first calculation in 
Figure 3.   In addition to having a higher average reflectance, the new spectrum is slightly flatter at the shorter 
wavelengths. 



The remaining plots in Figure 3 show mineral spectra derived from the f=0.8 calculation along with laboratory spectra 
from the Johns Hopkins University infrared reflectance library.15  For the quartz monocrystal we show results for two 
pixels, one located on the brightest facet and another on a side facet.  As the brightest facet appears to be sky-facing, we 
show the f=1 result for that pixel.  Both results agree well with the most reflective of the library quartz spectra.  For the 
other mineral samples only generic classifications (i.e., carbonates, silicates) are known, so we show library spectra 
within those mineral types that provide good matches.   

  

    
Figure 3.  Derived reflectances for diverse scene materials (thin curves) and similar spectra from the JHU library (heavy 
curves).  Assumed sky fraction values f and pixel coordinates x,y are noted. 

Figure 4 compares corresponding reflectance and radiance spectra for these materials.  The radiance spectra of the highly 
reflective quartz monocrystal and aluminum contain strong features from atmospheric water vapor and ozone.  The 
ozone band originates from the sky downwelling illumination.  In this experiment the water lines are also mainly from 
sky illumination, as the atmospheric transmission is very high (greater than 90% above 8.2 μm) at the 30 m standoff 
distance.  All of these atmospheric features are almost completely removed in FLAASH-IR’s conversion to spectral 
reflectance. 

5. CONCLUSIONS 

Processing LWIR hyperspectral imagery to reflectance units via atmospheric compensation and temperature-emissivity 
separation (TES) affords the opportunity to classify and identify solid materials with minimal interference from 
atmospheric effects.  Other studies have demonstrated similar capabilities in natural scenes observed from the air, 
typically under dry, clear atmospheric conditions and with natural materials that are not highly reflective.  This study, 
utilizing data from the Telops Hyper-Cam LW sensor and processing by the FLAASH-IR atmospheric compensation and 
TES code, shows that clean-looking surface reflectance or emissivity spectra can also be obtained in ground-to-ground 
(near-horizontal) observations, where there is significant illumination from the surrounding environment, and with 



highly reflective objects including bare metal.  In particular, FLAASH-IR performs well with the stressing combination 
of high reflectivity and moderately high spectral resolution (4 cm-1, or around 1.6x better than that of SEBASS3), where 
prominent, sharp spectral structure originating from sky illumination is removed by the atmospheric compensation 
process.   

 
Figure 4.  Comparison of spectral radiance (left) and derived reflectance (right) for the materials. 

In this study as well as in other observations and radiation transport models, uncompensated illumination contributions 
from cloud or nearby surface emissions result in lower apparent reflectance values, although the reflectance spectrum 
shapes are reasonably preserved.  While this is only a moderate effect in the data analyzed here, more severe reflectance 
signature reductions due to overcast weather or the presence of nearby tall objects significantly limit the utility of LWIR 
hyperspectral measurements. 
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