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ABSTRACT 

In recent years long-wavelength infrared (LWIR) hyperspectral imagery has significantly improved in quality and 
become much more widely available, sparking interest in a variety of applications involving remote sensing of surface 
composition.  This in turn has motivated the development and study of LWIR-focused algorithms for atmospheric 
retrieval, temperature-emissivity separation (TES) and material detection and identification.  In this paper we evaluate 
some LWIR algorithms for atmospheric retrieval, TES, endmember-finding and rare material detection for their utility in 
characterizing mineral composition in SEBASS hyperspectral imagery taken near Cuprite, NV.  Atmospheric correction 
results using the In-Scene Atmospheric Correction (ISAC) method are compared with those from the first-principles, 
MODTRAN©-based FLAASH-IR method.  Covariance-whitened endmember-finding methods are observed to be 
sensitive to image artifacts.  However, with clean data and all-natural terrain they can automatically locate and 
distinguish many minor mineral components, with especially high sensitivity to varieties of calcite.  Not surprisingly, the 
major scene materials, including silicates, are best located using unwhitened techniques.  Minerals that we identified in 
the data include calcite, quartz, alunite and (tentatively) kaolinite. 
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1.   INTRODUCTION 
Long-wavelength infrared (LWIR) hyperspectral imagery (HSI) has significantly improved in quality and become more 
widely available in recent years, and this in turn is sparking interest in a variety of applications involving remote sensing 
of surface composition.  Among the best known and most extensive aircraft-based data sets are those acquired by 
Aerospace Corporation’s Spatially Enhanced Broadband Array Spectrograph System (SEBASS)1, which covers both the 
midwave and longwave infrared (8-13 μm atmospheric window regions).  In addition, a growing archive of imagery 
from the NASA Jet Propulsion Laboratory’s HyTES sensor [www.http://airbornescience.jpl.nasa.gov/ 
instruments/hytes], which covers the 8-11 μm region, has been assembled for public distribution.  In addition, LWIR 
HSI data are now available from commercial sensors, such as the Telops HyperCam2 and the Specim AisaOWL.3  
However, the exploitation of LWIR HSI technology is still at an early stage, being much less developed than visible 
through short wavelength infrared (vis-SWIR) HSI, and questions remain about the overall utility of this wavelength 
region and the best choices of algorithms for data analysis. 

One natural application for LWIR HSI is in mineral identification, since many minerals have specific chemical 
signatures in the LWIR.  A handful of studies in this field have been conducted in recent years.3,4,5,6  Protocols developed 
for analyzing mineral scenes are relevant to the general problem of remotely detecting and identifying chemical 
compounds on the ground, such as for environmental monitoring and defense applications.  Many of these applications 
call for fast, automated data processing, requiring no analyst supervision or expertise.  Automatable steps include 
atmospheric retrieval and temperature-emissivity separation, location of “purest” materials (i.e., endmembers), both 
common and rare, material identification via comparisons to library spectra, and material abundance mapping.   



 
 

 
 

In this paper we analyze SEBASS LWIR HSI data with automatable algorithms to identify minerals in the vicinity of 
Cuprite, Nevada, a location that has been well studied with both vis-SWIR HSI and ground surveys.  Two different 
algorithms for atmospheric retrieval and temperature-emissivity separation (TES), FLAASH-IR7 and ISAC8, are 
compared.  Algorithms for finding endmembers in whitened and unwhitened reflectance (i.e., 1 - emissivity) units, 
respectively, are used to locate purest instances of major and rare constituents and estimate their abundances.  Rock and 
mineral identifications are made by comparing the endmembers with library spectra, and abundances are estimated by 
linear unmixing.  Calcite, quartz, alunite and (tentatively) kaolinite have been located in the scene.   

2.   DATA ANALYSIS 
Objectives 

One objective of HSI analysis is classification, i.e., identification of the major material in each pixel.  This may be done 
in several ways.  One is to autonomously separate the pixels into spectrally distinct classes and then label the classes by 
comparing their average spectra with a library of known materials.  Some type of biasing may be introduced to promote 
spatial contiguity of the classes.  Another approach is to specify classes a priori via library spectra and then classify the 
pixels according via a goodness of fit criterion.  In a variation on this method, the pixels may be linearly unmixed using 
library spectra, then classified according to the most abundant material.  An advantage of this method is that the 
abundance maps can be more informative than the class assignments alone, as they indicate the extent of material mixing 
and the presence of minor materials, both of which are relevant to mineral scenes. 

A different objective of HSI analysis is to find “rare” materials, which are materials that are outliers in the data and can 
be missed by standard classification methods.  These materials are best found by applying a whitening transform to the 
data to suppress the common materials.  The whitened data X′ may be defined via 

 X′ = ED-1/2ET(X-m) (1) 

where X is the original (radiance, emissivity or reflectance) data column vector, m is the image data mean, E is the 
matrix whose columns are eigenvectors of the data covariance, and D is the diagonal matrix of the corresponding 
covariance eigenvalues {d1, d2, ... dn}, where powers of this matrix are defined as DZ =  diag(d1

Z, d2
Z, ... dn

Z).  The E 
operation in Eq. (1) transforms the whitened data from eigenvector coordinates to the original wavelength coordinates.  
Whitened data are commonly used for rare target detection and anomaly finding.  Anomalies are defined as pixels with 
large whitened amplitudes (Mahalanobis distances).  These pixels can be further distinguished and identified using the 
same spectral endmember-finding, unmixing and matching algorithms that are applied to unwhitened data. 

Dataset 

The data we analyzed are SEBASS spectra acquired in the June, 2008 Joint Airborne Collection using Hyperspectral 
Systems (JACHS) experiment, which focused on mineral/lithologic identification and mapping along with 
environmental assessment in the western US.5   For this paper, two SEBASS LWIR data strips taken in the vicinity of 
Cuprite, NV, labeled 006_080614_130855_CPRT4m_05 and 006_080614_131925_CPRT4m_06, were analyzed 
independently of the Vis-SWIR or of any other imagery or ground measurements of the area.  The LWIR images will be 
referred to as, respectively, “05” and “06.” 

Atmospheric Retrieval and Temperature-Emissivity Separation 

Identification of materials using remotely sensed hyperspectral data requires accounting for atmospheric effects so that 
comparisons can be made with spectra taken in the laboratory.   The analysis makes use of the radiative transfer equation 

  Lobs(λ) = B(T, λ)ε(λ)τ(λ) + [1 - ε(λ)]L↓(λ) + L↑(λ) (2) 

where λ is wavelength, ε(λ) is the composition- and temperature-averaged spectral emissivity of the surface pixel, τ(λ) is 
the total (diffuse plus direct) transmittance between the surface and the sensor, B(T, λ) is the surface Planck blackbody 
function at temperature T, L↓(λ) is the transmitted incident (downwelling) illumination, and L↑(λ) is the atmospheric 
path radiance. T is effectively an emissivity-weighted average within each pixel.  Eq. (1) is rigorous for Lambertian 
surfaces; for specular surfaces the emissivity and illumination quantities may be regarded as “effective.”  For a given 
atmosphere, characterized by the transmittance, path and illumination radiance spectra, Eq. (1) can be solved for a family 
of emissivity (or reflectance, 1-ε(λ)) spectra corresponding to a range of possible surface temperature.  Likewise, for a 



 
 

 
 

given atmosphere and surface emissivity Eq. (1) defines a family of radiance spectra L(λ) associated with that 
temperature range.  

A number of algorithms for retrieving the atmospheric spectra and retrieving surface temperature have been developed, 
but none have been universally adopted.  A simple and popular algorithm is the semi-empirical In Scene Atmospheric 
Correction (ISAC) method8, which has been used in most previous mineral mapping studies.   ISAC uses approximate 
methods to find blackbody or near-blackbody pixels in the scene, and then performs linear regression with these pixels to 
estimate τ(λ) and L↑(λ).   The downwelling radiance is not retrieved and is neglected.  For natural materials it is 
reasonable to perform the TES by setting either the maximum emissivity or the emissivity at a long wavelength, such as 
12 μm, to a value close to 1; the former is the Normalized Emissivity Method, or NEM.  Alternatively, TES may be 
avoided entirely by using a temperature-independent transformed spectrum, such as the alpha residual9, for material 
identification. 

For low- to medium emissivity (i.e., reflective) materials, neglect of the downwelling radiance is a significant error, and 
a radiative transfer-based atmospheric retrieval method is needed.  We use FLAASH-IR7, a first principles atmospheric 
retrieval and TES algorithm based on MODTRAN®10 developed for thermal IR HSI.  FLAASH-IR uses a spectrally 
smooth emissivity constraint to retrieve a model atmosphere τ(λ), L↑(λ) and L↓(λ) from diverse pixels in the image.  The 
same constraint is then used with the retrieved atmosphere to perform TES on the entire image.   

The smooth-emissivity-based surface reflectance retrieval is sensitive to the magnitude of the downwelling signature 
appearing in the radiance spectrum.  When the downwelling radiance is small and the surface spectra have prominent 
structure, as is often the case with desert or other dry scenes, the absolute reflectance determination is less precise.  Here 
a TES method such as the NEM may be a better choice.  In a recent study using FLAASH-IR, the NEM with the 
FLAASH-IR atmosphere gave better results than FLAASH-IR’s baseline TES method.6  We observe similar behavior 
with the Cuprite data as well, and for our current analysis have adopted the NEM with maximum emissivity = 0.98.  For 
the FLAASH-IR analysis the NEM is applied within the 8.1-13.0 μm range, which excludes the most atmospherically 
opaque wavelengths where the retrieval is not as well defined.   

Figure 1 compares typical retrievals from image 06 using FLAASH-IR and the ISAC algorithm in ENVI (ENvironment 
for Visualizing Images, Exelis). Since the scene lacks either water or vegetation, it contains few if any true blackbody 
pixels, and this poses problems for ISAC’s atmosphere retrieval.  Indeed, both the atmospheric transmission and path 
radiance spectra from ISAC are unphysical at some wavelengths, where the former exceeds unity and the latter is 
negative (not shown).  However, the ISAC reflectances, while lower than those from FLAASH-IR at the shorter 
wavelengths, do remain physically reasonable, and in many cases are a little smoother than FLAASH-IR’s.  We adopt 
the FLAASH-IR results for the remainder of this paper. 

   
Figure 1.  Comparison of typical ISAC and FLAASH-IR (black lines) retrievals from image 006_080614_131925_ 
CPRT4m_06.  At left, reflectances from FLAASH-IR (black) and ISAC (color) from the same three pixels.  At right, 
retrieved atmospheric transmission 



 
 

 
 

Objective (1): HSI Classification via Automated Endmember-Finding and Unmixing 

As mentioned above, material classification in HSI may proceed by spectrally unmixing each pixel and then assigning a 
material from a library based on abundance.     

We have used two algorithms in this study for this purpose.  SMACC11 is a fast, approximate convex cone method that 
derives endmembers and abundances with positivity and optional sum-to-unity or sum-below-unity constraints.  Exact 
least-squares algorithms are considerably more time-consuming; however, an endmember method based on positivity-
constrained binary unmixing (PCBU), which allows up to two endmembers abundances per pixel, is very efficient, and 
its strong sparseness constraint reduces the likelihood of a single material being misrepresented as a mixture.  Our 
algorithm is similar to, but less optimized, than that described by Tits.12 

The SMACC algorithm is described elsewhere.11  At each endmember-finding step our PCBU algorithm, like SMACC, 
finds the pixel with the largest residual after unmixing, chooses that pixel as the latest endmember, and then recomputes 
the abundances and residuals before moving on to the next endmember.  The key difference is that SMACC uses an 
approximate method of computation based on the previous abundances and residuals, while PCBU performs the 
calculations at each step from scratch using least squares, retaining only the best-fitting endmember combinations.  With 
both algorithms the number of endmembers can be chosen to achieve a desired maximum residual size, and/or to provide 
a useful number of material types. 

The SMACC algorithm in ENVI was applied to the reflectance images over the 8.1-13.0 μm range using the positivity 
constraint only.  Figure 2 compares the first nine endmembers from each image.  We have made material assignments 
for most of the 18 endmembers by comparisons with spectra from the Johns Hopkins University13 spectral libraries, as 
shown in Figure 3.   

The first endmember in both images and the ninth from 06 are quartz.  Three endmembers from 05 and one from 06 
appear to be alunite.  One endmember from 05 and two from 06 are calcite. In both images endmembers 2 are relatively 
smooth and flat.  In image 06 this endmember is strongest on roads.  While most concrete spectra have quartz-like 
features, a construction tar spectrum from the JHU library is also very flat.   Endmember 4 from image 06 has two sharp 
peaks, at around 8.3 and 9.3 μm, very close to the quartz peak locations, but its shape somewhat resembles that of a 
library kaolinite spectrum.  A different spectrum, which we found in image 05 by explicitly searching for kaolinite using 
the ENVI ACE (Adaptive Correlation Estimator) detector, provides a good match to kaolinite beyond 9 μm, as shown in 
Figure 3 at bottom right.  Alunite, calcite and kaolinite have all been previously identified as abundant minerals at 
Cuprite based on vis-SWIR HSI.14  The endmember spectra from the PCBU algorithm were found to be similar to those 
from SMACC, although the order in which they are chosen can vary. 

  
Figure 2.  First nine SMACC reflectance endmembers from images 006_080614_130855_CPRT4m_05 (left) and 
006_080614_131925_CPRT4m_06 (right). 



 
 

 
 

 
Figure 3.  Comparisons of JHU library spectra (black curves) with reflectance data endmembers.  The possible kaolinite 
spectrum was found with the ACE detector. 

SMACC and PCBU-generated abundance maps of the calcite, alunite and primary (#1) quartz endmembers in image 06 
are shown in RGB false color in Figure 4.  The PCBU image was generated using the SMACC endmembers.  It has an 
appearance intermediate between the SMACC abundance map and a typical classification map.  Since the PCBU 
algorithm limits the abundances to two endmembers per pixel, there are many pixels that consist of only the other 
endmembers, and appear as black.  The brighter areas of the SMACC abundance map correspond reasonably with the 
the PCBU abundances, although it appears that PCBU blends more calcite with the alunite and quartz at the expense of 
other endmembers. Both abundance maps are in qualitative agreement with results derived from VNIR-SWIR 
reflectance spectroscopy by Taranik.14 

When too many endmembers are chosen (greater than around ten), some of the PCBU and SMACC abundance images 
take on a salt-and-pepper appearance, indicating that those endmember assignments are not well determined.  This 
suggests that an optimum number of endmembers might be chosen based on spatial contiguity of the abundances.  

 

 
Figure 4.  Abundances of quartz (red), alunite (green) and calcite (blue) endmembers from SMACC (top) and PCBU 
(bottom) in a portion of image 006_080614_131925_CPRT4m_06.  



 
 

 
 

Objective (2): Rare Material Detection via Endmembers from Whitened Data 

As a separate objective, material detection can proceed from whitened endmembers for HSI.  Whitening suppresses the 
major materials, such as quartz and alunite, and emphasizes sharp spectral features, such of those of calcite.   The PCBU 
algorithm was run on the whitened images to find endmembers and abundances, and the unwhitened spectra of those 
endmembers were reported.   Distinctive endmembers include examples of Endmember 4 from image 06, a triple-peaked 
spectrum not found previously, and a variant of calcite in which the typical 11.3 μm peak (see Figure 3) is inverted.  The 
latter two spectra are shown in Figure 5 along with a calcite spectrum from the JHU library that has matching features in 
the 11.3 μm region.  Since the major backgrounds are suppressed by whitening, the abundance maps for all of the 
endmembers are very sparse. 

 
Figure 5.  Selected endmembers from the whitened reflectance image 006_080614_130855_CPRT4m_05.  Curve in black is 
from the JHU library. 

3.   SUMMARY AND CONCLUSIONS 
In this paper we used SEBASS data from Cuprite, NV to evaluate automatable algorithms for atmospheric retrieval, 
TES, endmember-finding and rare material detection for their utility in mineral characterization.  Emissivity or 
reflectance retrievals using atmospheric spectra from the first-principles FLAASH-IR method differed from ISAC 
retrievals at the shorter wavelengths and should be more accurate.  ISAC ignores the atmospheric downwelling radiance, 
and makes the assumption, which is questionable for this very dry environment, that blackbody pixels at different 
temperatures are present in the scene.  Fast, automated endmember-finding and unmixing algorithms were shown to be 
of value in identifying “purest” materials, including both major and minor mineral components, the latter using whitened 
data.  Similar endmembers were found by the SMACC endmember and a binary unmixing-based algorithm.  The latter 
generates sparse abundance maps that are intermediate between positivity-constrained abundance maps, from algorithms 
such as SMACC, and standard methods that assign a single class to each pixel.  The end-to-end data analysis approach 
described in this paper is well suited to general applications in LWIR HSI that call for fast, automated data processing, 
with minimal or no analyst supervision or expertise.   
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