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Abstract

We review and extend the theory of tomographic dose reconstruction for intensity modulated

radiotherapy (IMRT). We derive the basis for a saturation with beam number of dose conformation,

and provide an analysis which ranks particular beam orientations in terms of the contribution to the

delivered dose. Preferred beam directions are found which effectively reduce the number of beams

necessary to achieve a given level of dose conformation. The analysis is a new application of the

tomographic Projection-Slice Theorem to the problem of beam orientation determination. The effects

of the beam front filter and the positivity constraint arising from the tomographic approach are

analyzed, and modifications of the beam front filter for small beam numbers are suggested. The

theory is applied to simple geometric shapes in two dimensions. A Gaussian ellipse, where analytical

results are obtained, and simple hard-edged convex prescribed dose shapes are examined to illustrate

beam selection based on the beam overlap metric. More complex concave prescribed dose shapes

which contain a sensitive organ are also analyzed and for low beam numbers are found to have

preferred beam directions.
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1. Introduction

Intensity modulated radiation therapy (IMRT) involves the delivery of multiple modulated x-ray

beams at various orientations relative to the patient. The goal is the delivery of a lethal radiation dose

to the tumor volume (TV) with minimum dose to normal tissues and organs-at-risk (OARs). The

dose inversion problem is the determination of the best combination of beam orientations and

modulation patterns to approximate a prescribed dose. In practice, these are often found by trial and

error simulation studies of the delivered dose by the medical physicist and physician, guided by their

experience base. However, the large number of possible beam angles and modulation patterns make

this approach to an optimal dose plan difficult and time-consuming for IMRT.

Many computational methods of solving the inversion problem in radiation therapy have been

studied. Some examples include simulated annealing (Webb 1989, Webb 1991, Mageras and Mohan

1993), constrained random search (Neimierko 1992), maximum likelihood estimation (Llacer 1997),

projection onto convex sets (Lee et al 1997, Cho et al 1998), linear programming (Rosen et al 1991)

and non-linear feasibility search (Censor et al 1988). Reviews are found in Webb 1993 and Boyer

1993. In the early 1980s it was realized that the tomographic theory of projections could be used to

approximate the relationship between intensity modulated beams and the delivered dose (Brahme

et al 1982). A series of articles demonstrated that the same powerful mathematical framework used

in CT, MRI, and ECT  to reconstruct tissue images from projections could be used to solve the

inverse problem of determining beam orientations and modulation patterns from a dose prescription

(Cormack 1987, Cormack and Cormack 1987, Cormack and Quinto 1989, Cormack and Quinto

1990, Bortfeld et al 1990, Mackie et al 1993, Holmes and Mackie 1994, Bortfeld and Boyer 1995).

Among the advantages of the tomographic approach is that it is very intuitive, building into the
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mathematical formalism the use of  beam’s-eye-view projections of the tumor to define the beam

front. The projection automatically compensates for fluence attenuation as the tumor is traversed,

so that normal tissue exposure is reduced. In addition, the projection formalism is cast in such a way

that basic results can be derived analytically for simple tumor shapes. Furthermore, the method

avoids many of the numerical difficulties of search algorithms as each orientation is independently

processed in projecting the dose onto the beam front. This becomes especially relevant when full 3D

geometries are considered with a large number of potential beam locations and modulation patterns

(Gregerson et al 1995, Levine et al 1999). While IMRT beam numbers have been determined for

some important cases such as the prostate (Stein et al 1997), the factors increasing beam numbers,

such as dose resolution, may force consideration of many more beams for precision conformal

therapy. Unlike standard tomographic reconstruction of images from measured projection profiles,

the inversion of the prescribed dose results in photon fluences which may be negative and therefore

unphysical. This must be removed by a positivity constraint, a condition that directs the unavoidable

exposure to nearby healthy tissues. The tomographic analogy for IMRT is further complicated by low

beam numbers and a beam/dose model with fluence attenuation and electron transport; effects that

must be incorporated into an approximate tomographic model. However, unlike in CT, the goal of

the reconstruction, the prescribed dose, is known apriori. Therefore, optimum beam orientations are

derivable.

In this paper the theory of tomographic dose reconstruction is reviewed and extended. The results

of the theory are applied to simple geometrical shapes to illustrate the basic results, and to more

complex and realistic dose prescriptions. One of the main issues considered is the number of beams

required to reconstruct a given prescribed dose; and the existence of preferred beam directions which

may be used to reduce the number of beams sufficient to achieve a certain level of conforming dose.
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The consensus in beam orientation determination appears to be that for more than about five beams,

there is negligible improvement over a uniform array of beams (Bortfeld and Schlegel 1993, Oldham

et al. 1998). With fewer numbers of beams, however, preferred directions can be obtained by a

global search in the space of beam orientations with multiple local minima (Bortfeld and Schlegel

1993). Oldham et al (1998) have similarly illustrated the idea of preferred directions with the use of

a “beam-cost plot” of  an objective function which depends on the couch and gantry angles. Llacer

(1997) derives preferred beam directions from a curvature-based measure of the prescribed dose

function. A goal of the present work is to motivate the existence of these preferred directions by

setting them on a firm mathematical foundation through consideration of the frequency space

properties of the prescribed dose function. Our approach is based on the properties of the prescribed

dose in frequency space through the tomographic Projection-Slice Theorem, which also provides an

estimate of the required beam number from the number of cylindrical harmonics in the Fourier

transform. While the conclusions are similar to the above mentioned references, the application of

tomographic sampling theory to IMRT inversion in this way is to our knowledge unique.

The choice of optimum beam number and orientations that are clinically achievable is not well

understood. Current treatment protocols involve fewer than 20 beams, which can be an extreme

undersampling of the optimum continuous beam profile functions. In the literature, IMRT beam

number estimates range from 32 on a cylindrically symmetric phantom (Webb 1989), nine coplanar

beams for nasopharynx (Bortfeld et al 1990) and prostate (Bortfeld et al 1994), 5-6 beams for

prostate (Spirou and Chui 1998), to as few as 3-5 beams for general treatment (Oldham et al 1998,

Haas et al 1998, Soderstrom and Brahme 1993). Alternative approaches to the inversion problem

that search the space of beam configurations have been too slow for a fine resolution search of beam

number and orientations (Stein et al 1997, Oldham et al 1998, Haas et al 1998, Rowbottom et al
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1998). Although the use of very few beam numbers has been advocated recently (Stein et al 1997,

Oldham et al 1998, Spirou and Chui 1998, Soderstrom and Brahme 1993) to achieve tumor dose

homogeneity with acceptable conformation, new applications of high precision radiosurgery

(Oldham et al 1998, Cardinale et al 1998) to concave tumors suggest the need to examine the trade-

off between the dose edge and tumor dose heterogeneity with many beams. Because this trade-off

involves the delivered dose function frequency content, a more general framework for the analysis

of beam number and orientation, as presented here, may be useful.

The effects of the physical constraint of positive beam profiles on the tomographic inversion

algorithm and on the achievable delivered dose are also considered. We illustrate these effects with

simple examples and find that, while this constraint results in unavoidable normal tissue exposure,

the tomographic approach is superior to dose projection alone even with small beam numbers. The

effects of the mathematical beam front filter, a high pass filter which is part of the tomographic

formalism and is important in achieving a conforming dose (Bortfeld and Boyer 1995), are also

discussed. A natural generalization of the filters is suggested for small beam numbers.

In Section 2, the formal theory for IMRT inversion including fluence attenuation and electron

transport is presented. For clarity, we restrict our analysis to two dimensions, but have already shown

how the theory can be extended to three dimensions (Gregerson et al 1995, Levine et al 1999). The

basis for beam number saturation and the ranking of beam orientation from a given prescribed dose

is derived. In Section 3, we illustrate beam number saturation and preferred orientation effects with

a Gaussian ellipse dose prescription, for which results can be obtained analytically, and discuss the

effect of the beam front filter and the positivity constraint on the delivered dose. In Section 4, these

issues are examined numerically with a series of geometric shapes closer to a clinical prescription:
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convex dose functions including an elliptical dose function, a “peanut” shaped tumor, an elliptical

shaped tumor with an organ-at-risk, and more complex concave dose functions including a

“butterfly” shaped tumor, and a “horseshoe” shaped tumor enclosing an organ-at-risk. We find that

beam number and preferred direction effects, as well as the importance of including the beam front

filter, carry over to the more realistic dose prescriptions. The conclusions follow in Section 5.

2. Tomographic IMRT Formalism

2.1. Dose Inversion

In this section the formalism of tomographic dose delivery in two dimensional IMRT is reviewed

(Cormack 1987, Cormack and Cormack 1987, Cormack and Quinto 1989, Cormack and Quinto

1990, Bortfeld et al 1990, Mackie et al 1993, Holmes and Mackie 1994, Bortfeld and Boyer 1995).

The generalization to three dimensions, which permits enhanced dose conformation and organ-at-risk

shielding, can be found in Levine et al. 1999. Figure 1 contains the description of 2D tomographic

IMRT consisting of a gamma ray beam profile ),( sf θ  at an angle θ  relative to the tissue space

coordinate system. The treatment beam rotates at a radius 0R  about the treatment isocenter, which

is typically in the center of the tumor. It is assumed that the projected extent of the treatment volume

is contained in the modulated beam front.

The total dose to the point xv  in the tissue is the integral over θ  of the dose due to ),( sf θ . For

a profile at angle θ , define )ˆ,( θθτ ⋅xv  to be the distance in air from the tissue surface to the beam

front (at θ̂⋅= xs v ) along a ray that intersects the point xv . As seen in figure 1, θ̂  denotes the vector

)cos,(sin θθ −  along the beam front and )sin,(cosˆ θθθ =⊥  is normal to the beam. For notational
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clarity, the superscripts ∧  and →  on θ̂ , ⊥θ̂ , xv  and yv  will be removed from dot products in the

remainder of this section. The depth in tissue to the point xv  along the ray is given by

)),((),( 0
⊥⋅−⋅−= θθθτθ xxRxd v . (1)

The photon fluence ),( θθ ⋅xI  from the beam front location θ⋅= xs is assumed to be exponentially

attenuated in the tissue with attenuation constant µ . The result is

),(),( ),( θθθθ θµ ⋅=⋅ − xfexI xd . (2)

Radiation dose ),( xD vθ  results from the interaction of the photons with electrons primarily by

Compton scattering and pair production (Johns and Cunningham 1983). It is assumed that the effects

of subsequent electron transport can be modeled as a 2D convolution of the photon fluence in the

tissue

))(,()(),( ),( θθκ
ρ

µθ θµ
θ ⋅−= ∫ −− yxfeyydxD yxden

vvvvv (3)

where there is, in general, a beam angle dependence in the dose kernel κ . The dose kernel from

beam θ at the point xv  is roughly an ellipse whose long axis extends along the direction ⊥θ̂ . The

factor ρµ /en  converts the photon fluence to delivered dose in tissue of density ρ  and energy

deposition constant enµ  (Johns and Cunningham 1983). The functional form of the dose kernel

)( yvθκ  for homogeneous tissue is given by

),()( ⊥⋅⋅= θθκκ θ yyyv  (4)

reflecting rotation of the kernel with the beams. Figure 2 contains a representation of multi-beam

dose delivery in which the rotated kernels in Eq. (4) are shown.
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The total tomographic dose is given by the integral over all beam directions as

))(,(),()()( ),( θθθθκθ
ρ

µθ θµ
θ ⋅−⋅⋅== ∫ ∫∫ −−⊥ yxfeyyyddxDdxD yxden

vvvvv , (5)

which upon substitution of equation (1) yields

)])(,([),()( ))(,()(
0

θθθθκθ
ρ

µ θθµτθµ
µ

⋅−⋅⋅= ∫ ∫ −⋅⋅−⊥
−

⊥

yxfeeyyyddexD yxyx
R

en vv . (6)

Changing the yv  integration variable to θξ ⋅= y  and ⊥⋅= θη y , the integral in equation (6) is

written

)],([),()( ),(
0

ξθθηξηκξθ
ρ

µ ξθθµτθµµη
µ

−⋅= −⋅⋅−
−

⊥

∫∫ xfeeedddexD xx
R

env . (7)

Defining the θ -independent scattering kernel

∫ −= ),()( ηξκηξκ µη
µ ed , (8)

the expression in equation (7) is written in the desired form,

),)(()(
0

θθκθ
ρ

µ
µ

θµ
µ

⋅⊗=
⊥⋅

−

∫ xHedexD x
R

env , (9)

where ⊗ denotes the one-dimensional (beam front) convolution, and

),(),( ),( sfesH s θθ θµτ≡ (10)

is the modulated beam front f  compensated by the factor ),( se θµτ  for a non-planar tissue-air

interface. The expression in equation (9) is the dual attenuated Radon transform of the convolved,

compensated beam profile )( H⊗µκ  which is denoted (Natterer 1986),
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)(#
0

HTeD
R

en ⊗=
−

µµ

µ

κ
ρ

µ . (11)

The goal of IMRT planning is the inversion of equation (11) to obtain a beam profile ),( sf θ

for a prescribed dose function DP = . The formal inversion of equation (11) follows from a theorem

that states that for any function ℜ→ℜ 2:g ,

gTITg µµµπ −
−
−= 1#

4
1 , (12)

where

∫
=⋅

⋅−
−

⊥

=
sx

x xdxgegT
θ

θµ
µ

vv)( (13)

is the attenuated Radon transform and 1−
−µI  is a beam front filter operator (Bortfeld and Boyer 1995,

Gregerson et al 1995, Levine et al 1999) defined by





=
∧
−
− 0

)(ˆ||))(( 1 σσσµ
ffI      

otherwise
|||| µσ >

, (14)

where ∧  denotes Fourier transform, and where σ is the spatial frequency variable. The expression

in equation (12) suggests that for a prescribed dose function DP = , the inversion of equation (11)

is given by

)(
4

),( 11),(0 PTIesf sR

en
µµµ

θµτµ κ
πµ
ρθ −

−
−

−− ⊗= . (15)

This is the basic result of tomographic IMRT inversion relating the prescribed dose to the beam

front. The inversion algorithm suggested by equation (15) consists of a µ -compensated projection

of the dose, defined in equation (13), followed by two beam front filters arising from the rotational
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treatment geometry ( 1−
−µI ) and electron transport ( 1−

µκ ). The filters 1−
−µI  and 1−

µκ  accentuate the high

frequency content of the projection. The reason for the filter 1−
−µI  is not intuitive, but can be related

to the sampling density in the Fourier space of the prescribed dose function (see Section 2.4 and

Bortfeld and Boyer 1995). The use of a µ -compensated projection, µ−T , is a new component of the

basic formalism (Bortfeld and Boyer 1995, Gregerson et al 1995, Levine et al 1999), and

automatically takes into account attenuation effects as the tumor is traversed so that more dose is

deposited where the tumor is wide. There is also an overall correction factor due to the tissue-air

boundary given by ),( se θµτ− .

Unlike in CT processing, however, the filtered beam obtained from the formal inversion above

represents a physical photon fluence. Consequently, a positivity constraint must be applied to

),( sf θ  by setting negative fluence to zero (Brahme et al 1982, Cormack and Quinto 1989, Cormack

and Quinto 1990, Bortfeld et al 1990). Negative fluence arises mathematically from the application

of the filter operator 1−
−µI , to the positive profile T−µP in Eq. (13). The negative values in a beam are

typically near the edges of the beam front to cancel the positive fluence values (on rays intersecting

the tumor) from other beams in normal tissue. The dose predicted from beams in which the

unphysical negative fluence is zeroed has unavoidable normal tissue exposure. Modulated beam

fronts without negative fluence are obtained by dose projection alone; that is, by dropping the 1−
−µI

filter in equation (15). This is a very intuitive approach to IMRT, because the outline of the tumor

determines beam port shape. It can be shown, however, that without the filter the delivered dose in

equation (11) is approximately a 2D r/1  convolution of the prescribed dose (Natterer 1986),

resulting in a delivered dose which is less conforming than that with the filter present. This effect,

which is especially evident for larger beam numbers, is discussed further in Sections 3 and 4. It is
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shown that the application of filter operator 1−
−µI  and the positivity constraint results in less normal

tissue exposure than dose projection alone.

2.2 Beam Number Saturation

The number of beams required for 2D tomographic reconstruction is a classic problem in the

field addressed in Crowther et al 1970. In this section a similar argument is used to obtain beam

number estimates based on equation (11) and the Projection-Slice Theorem. We will show that the

expansion of the prescribed dose in cylindrical harmonics is related to the number of beam

directions. This relationship puts a condition on the number of beams required to reconstruct a given

prescribed dose. As an aside, it is interesting that inversion of dose cylindrical harmonics was

recently proposed as the basis of a tomographic IMRT reconstruction algorithm (Cormack 1998,

Oelfke and Bortfeld 1999).

The Projection-Slice Theorem (Natterer 1986) states that for a function, ℜ→ℜ 2:g , the Fourier

transform of the projection is related to a slice of the 2D Fourier transform by

)(ˆ2),()( ⊥
∧

− −= µθσθπσθµ iggT . (16)

Multiplying both sides of equation (15) by ),( se θµτ  and taking the Fourier transform results in the

expression








−

=
⊥

0

)(ˆ
)(ˆ

||
22),(ˆ

0

µθσθ
σκ

σ
µπ

ρ
σθ µ

µ

iDe
H en

R

    
otherwise

µσ >||  (17)

where ),( sH θ  is the surface-compensated beam front in equation (10). For high energy x-rays

( MeV1> ) the extinction length 1−µ is large compared to the length scales in the prescribed dose
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function (Johns and Cunningham 1983), so it is dropped in the following discussion. In the limit

0→µ , the dose function D̂  in equation (17) is written

  )(ˆ
)(ˆ

||
22

),(ˆ
0

σθ
σκ

σ
µπ

ρσθ
µ

µ

DeH
en

R

= , (18)

which relates the 1D beam front Fourier transform to a slice of the 2D dose Fourier transform.

Expanding the 2D dose function D̂  in N  cylindrical harmonics, we have

∑
−=

=
N

Nn

in
n eGD θσσθ )()(ˆ . (19)

Note from equation (18) that the set of coefficients )}({ σnG , which completely determines the dose

function, is linearly related to the set of beam modulation patterns for fixed σ . Assuming M  beams

at angles },,1,{ Mjj K=θ , the M  equations for )12( +N  harmonic coefficients are given from

equation (18) by

),(ˆ
||
)(ˆ22)(

0

σθ
σ

σκ
ρ
µπσ µ

µ
θ

j

R
en

N

Nn

in
n HeeG j

−

−=

=∑ , Mj ,,1 K= . (20)

The required beam number to determine the unknown harmonic coefficients )}({ σnG  is then given

by

)12( +≥ NM , (21)

where N  is determined by the condition NnGn >∀∀→ ,,0|)(| σσ .

In traditional image reconstruction, the condition in equation (21) is related to the spatial

frequencies and size of the reconstructed object using the Bessel Function transform between the
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cylindrical harmonics of Fourier transform pairs in two dimensions (Crowther et al 1970). The result

is an approximate sufficient beam number given by

2/RWM π≈ , (22)

where R   and W  are the radius and maximum spatial frequency of the reconstructed function,

respectively (Bortfeld et al 1990). This “Bow Tie” condition is a very conservative bound arising

from the Debye approximation for Bessel functions with large order (Natterer 1986, Crowther et al

1970, Lindgren and Rattey 1981). Because the dose function is known apriori in IMRT, however,

the computation of )}({ σnG in equation (19) is possible for a direct estimate of required beam

numbers. This is shown in Section 3 for an elliptical Gaussian dose, where the harmonic coefficients

can be determined analytically, as well as other more clinical prescribed dose functions.

2.3. Beam Orientation Metric

In this section tomographic IMRT is applied to obtain an approximate orientation metric for

beams; that is, an angle-dependent function ranking beam orientations for the relative contribution

to dose reconstructions. Consider the overlap of two beam profiles }2,1),,({ =isfi θ  defined by

),(),(),( 2121 sfsdsfdff θθθ∫ ∫= , (23)

and of two tissue space dose functions }2,1),({ =ixDi  given by

)()(],[ 2121 xDxdxDDD ∫= . (24)

It can be shown that the dual Radon transform in equation (11) for 0=µ  is, in fact, the metric dual

of the Radon transform (Natterer 1986). In terms of the definitions in equations (23) and (24), this

relationship can be expressed as
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),(],[ 0
#

0 DTfDfT = (25)

for arbitrary dose )(D  and profile )( f  functions. For a prescribed dose function )(xP  defining the

beam profile in equation (15), the delivered dose from the thj  beam is

)],)([()( #
0

sHTexD j

R
en

j
θκ

ρ
µ

µµ

µ

θ ⊗=
−

, (26)

where H  is defined in equations (10) and (15) with PD = . The overlap of )(xD
jθ  with the

prescribed dose )(xP  for 0=µ  (in #
µT ) is

),()](),([)](),([ 0
#

0

00

HPTeHTxPexDxP
R

en
R

en
j

⊗=⊗=
−−

µ

µ

µ

µ

θ κ
ρ

µκ
ρ

µ , (27)

which upon substitution of equations (10) and (15) yields

dssPTIsPTxDxP jjj
)),()(,(

4
1)](),([ 0

1
00 θθ

πθ ∫ −= . (28)

The expression on the right-hand side of equation (28) is an angle dependent measure defined on the

beam profiles known as the ρ -metric (Medoff 1987) which measures the overlap of the dose

contributed from beam angle j with the prescribed dose. Note that the angle metric is independent

of the electron transport kernel κ . Optimization of the overlap implicitly assumes that the prescribed

and delivered dose functions are normalized such that [P,P] = [D,D] = constant. Assuming a

normalization constant of unity, we have

],[22],[ DPDPDP −=−− , (29)

so that maximum overlap ],[ DP  corresponds to minimum discrepancy between delivered and

prescribed dosages. The normalization condition is only approximately valid in IMRT because the
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dose is usually normalized to %100  tumor coverage by the prescription, rather than an integral

condition 1],[],[ == DDPP . In Section 3 the measure is applied to an elliptical dose prescription

for an analytical estimate of optimum beam orientations. In addition, more general beam orientation

criteria based on sampling theory is suggested.

3. Analytic results for the Gaussian Ellipse

     In this section the formalism developed in Section 2 is applied to simple dose functions to

illustrate basic results, including beam number saturation and orientation effects. This is done with

a Gaussian ellipse prescribed dose for which tomographic IMRT beam fronts and other properties

can be derived analytically. Beam front positivity constraint and sampling effects are also discussed

with this model. In Section 4, we demonstrate numerically how these results extend to more

clinically relevant prescribed dose shapes. The results taken together demonstrate heuristic

guidelines for the inversion problem derivable from tomographic IMRT.

3.1 Beam Thresholds

In this section an elliptical Gaussian dose function centered at ),( 00 yx  given by






 −−−−= 2

2
0

2

2
0 )()(exp),(

b
yy

a
xxyxP , (30)

is used as the input to IMRT dose inversion. Although equation (30) does not represent a typical

prescribed dose function, it provides an analytic testbed for the concepts discussed in Section 2.

In Section 2 it was suggested that the number of beams required for dose reconstruction is

linearly dependent on the number of cylindrical harmonics in the Fourier transform of the dose
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function. This number can be computed analytically for ),( yxP  in equation (30) by consideration

of the Fourier transform,

)]sincos(exp[)cos2exp(),(ˆ 222222 φφπφππφ bakikrabkP +−−= , (31)

where without loss of generality, φcos,0, 00 kkyrx x === , and φsinkk y = . By repeated use of

the identity

∑
∞

−∞=

−=−
l

il
l

l ekrJiikr φπφπ )2()cos2exp( , (32)

the expansion in equation (19) is computed for ),(ˆ φkP  to obtain

∑
∞

−∞=

=
p

ip
p erkGkP φφ ),(),(ˆ , (33)

with

∑
∞

−∞=
− 




 −





 +−=
m

mpm
p

p
kbaIkrJkbaabirkG

2
)()2(

2
)(exp),(

2222

2

2222 ππππ , (34)

where }{ nJ  and }{ mI  are the Bessel and associated Bessel functions, respectively. In the limit

0→r , equation (34) is written,






 −





 +−−=
2

)(
2

)(exp)1()0,(
22222222

2
kbaIkbaabkG m

m
m

πππ . (35)

A comparison of equations (34) and (35) suggests that the effect of a tumor offset )0( ≠r  is to add-

in lower ordered Bessel functions to the harmonic coefficients, and thereby increase the relative

value of the coefficient. The resulting increase in beam number suggests the intuitive fact that the

most efficient use of beams is with the isocenter at the center of the tumor.
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Figure 3 contains plots of the cylindrical harmonic coefficients, )0,(2 kG m , for a Gaussian ellipse

with  dimensions )1,5(),( =ba , and )1,10( . The spatial frequency unit for k , typically cm-1, is the

inverse of the unit for a  and b . As the tumor becomes more elongated and larger, more cylindrical

harmonics contribute to the delivered dose. Also note that the harmonics fall off monotonically with

increasing beam number, 2m. By cutting off the contribution at ~1 % of the maximum, estimates of

15 and 20 nonzero harmonics are obtained for a  of  5, and 10, respectively, indicating rough beam

numbers in the dose reconstruction. We expect beam number saturation to extend to more typical

dose prescriptions with step function edges. These are investigated numerically in Section 4 to

demonstrate the existence of beam numbers beyond which there is negligible improvement in the

delivered dose. That number is greater for a more elongated or irregularly-shaped tumor with a

greater number of cylindrical harmonic coefficients.

3.2 Beam Metrics and Preferred Orientations

We now derive the beam metric as described in Section 2, and rank the relative importance of

particular beam orientations for the Gaussian ellipse dose prescription. This is done by computing

the overlap of the prescribed dose and the delivered dose from a particular beam direction as shown

in equation (27). We first use equation (15) to derive the beam front, and then find its overlap with

the prescribed dose.

Neglecting electron transport effects ( 0κ  is not considered) and assuming the tumor is small

compared to the attenuation length ( 0=µ ), substitution of equation (30) into equation (15) yields

the IMRT beam front,





 −−== − ))(/()](/exp[

)(2
1

)(
2

4
),( 22

20
1

0 θωθω
θωθπωπµ

ρθ sEssabPTIsf
en

, (36)



18

where

xdeyE
y

x∫=
0

2

)( , (37)

and

θθθω 2222 sincos)( ba += . (38)

Substitution of equation (30) into equation (13) with 0=µ  yields the Radon transform of the

prescribed dose, ),( yxP , given by

))(/exp(
)(

22
0 θω

θω
π sabPT −= (39)

which is, as expected, a Gaussian function with angle-dependent width. The substitution of the

positively constrained expressions in equations (36) and (39) into equation (27) yields the overlap

contribution of the beam at angle θ  to the Gaussian dose prescription,

)()/(
2
12)](),([)( 0

//
3

22
2222

ξ
ω

ω
ωωπ
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where E  and ω  are given in equations (37) and (38), and Ω  is one minus the Theta function

( 0,0)( ≥=Ω rr , and 1)( =Ω r , otherwise). The parameter 0ξ  in equation (40) is the point along the

beam front where the fluence becomes negative (see figure 6). Changing the integration variable to

ω/su =  in equation (40) yields
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θ 2222
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JbaM

+
= , (41)

where J is the numerical constant
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Equation (41) is the beam metric for the Gaussian ellipse and is the chief result of this section. It can

be immediately seen that for ellipses with ba > , angles near 900 and 2700 along the long axis of the

ellipse have larger beam metric values, while the function is smallest at 00 and 1800.  Angles along

the 900 and 2700 directions will therefore contribute more to the reconstruction. As expected, for

circular ellipses, ba = , there is no direction preference.  Figure 4 contains a plot of the beam

selection metric, )(θM , normalized to a maximum of 1.0 for the Gaussian ellipse dose prescription

in equation (30) with a=4cm and b=0.8cm. The prescribed dose is also shown in the figure. Beam

selection maxima occur along the narrow ends of the ellipse as expected. These orientations

correspond to beams at 900 to the bottom of the figure. This property also holds for more realistic

dose prescriptions with hard edges considered in Section 4. Intuitively these beam directions are

preferred because high pass filtering of the projected dose to obtain the beam front accentuates the

directions with higher varying (higher frequency) projections. Even without beam filtering, the beam

metric is an overlap function which will be larger for directions with narrower projected doses. This

is clear if we consider a uniform rectangular prescribed dose of length al  and bl , with ba ll >  (see

Bortfeld and Schlegel 1993 for a similar argument). The beam metric along the narrow projection,

1M , will have a width bl  and will be proportional to 2
abll . The beam metric along the wide end, 2M ,

will have a width al  and will be proportional to 2
ball , so that 21 MM > , and the narrow projection

direction will be preferred.

The beam selection metric can reduce the number of  beams necessary to reconstruct the

prescribed dose compared to using beams evenly spaced around the tumor. Dose conformation for
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the Gaussian ellipse was judged by a scatterplot, which is defined as a plot of delivered versus

prescribed dose over the set of pixels in the tissue. The limit of perfect reconstruction is revealed by

the alignment of the scatterplot along the 450 line, where the delivered and prescribed doses are

equal. The delivered dose is obtained by the application of  equations (10) and (11) to beam fronts

defined by equation (15) with the Gaussian ellipse dose described above. Although these functions

are analytic, finite sampling here and elsewhere in this study was done at 0.1cm for convenience. The

Nyquist limit for this sampling is 5cm-1, well above the frequency content in the prescribed dose

shown in figure 3. Numerical results were compared with analytic results for accuracy. For these

calculations and those elsewhere in the paper, attenuation and electron scatter effects were neglected.

Figure 5 contains isodose contours and scatterplots of delivered versus prescribed dose for the

)8.0,0.4(),( =ba  Gaussian ellipse. Results are shown for 50, 18, and 10 modulated beams with even

angular spacing between 00 and 1800 degrees (with no attenuation or scatter effects these directions

are equivalent to angles between 1800 and 3600). Also shown is the scatterplot for 10 modulated

beams selected at an even angular spacing between 450 and 1350 that correspond to the highly

weighted angles of the beam metric shown in figure 5. An overall fluence normalization factor is

applied to match the prescribed dose value of 1.0 at the isocenter. With 50 beams, there is nearly

perfect reconstruction except for unavoidable overdosage below 20% of the dose maximum, which

is due to the positivity constraint. Without this constraint, there is nearly perfect reconstruction with

50 beams. With 18 beams, which is close to the saturation point derived from the cylindrical

harmonic expansion of the prescribed dose in figure 3, this overdose becomes slightly worse. With

10 beams, the overdosing is severe so that low prescribed dose regions receive as much as 50% of

the delivered dose, and there is more variability in the high dose regions. On the other hand,
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clustering the 10 beams around the “metric” direction removes this overdosing and the results

approach the quality of the 18 beam treatment.

3.3 Beam Front Filtering and the Positivity Constraint

A non-intuitive component of  tomographic dose inversion in equation (15) is the high-pass filter

operator 1
0
−I  in equation (14), which arises mathematically from the Fourier space coordinate

transformation in the Projection-Slice Theorem (Natterer 1986). The filter is the source of negative

fluence in equation (15) that is removed by the positivity constraint. The impact of the filter can be

clearly seen for the Gaussian ellipse dose prescription because of the existence in equation (36) of

a single angle-dependent boundary point 0ξ  for negative fluence on the beam defined by the

condition

)exp(
2
1)( 2

0
0

0 ξ
ξ

ξ =E (43)

where

)(/0 θωξ s= , (44)

which is numerically equal to about .0.10  In figure 6 the beam front function, ),( sf θ in equation

(36), is plotted at θ  of zero for the Gaussian ellipse in equation (30) before and after the application

of the filter. Note that the effect of the filter is to create unphysical negative fluence (hatched region).

These outlying regions of the beam front are set to zero by the positivity constraint. The beam front

before filtering is completely positive, yet wider than the positive region of the beam front after

filtering.
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An important question is of the need for the filter in dose reconstruction; that is, whether the

filter plus positivity constraint is superior to direct projection to a positive fluence (see also Bortfeld

et al 1990, Mackie et al 1993, Holmes and Mackie 1994). Figure 7 contains the delivered dose

reconstruction and scatterplot for the  Gaussian ellipse without the filter for 50 evenly spaced beams.

Compared to the results seen in figure 5 for 50 beams with the filter, far superior dose conformation

is obtained through the use of the filter and positivity constraints. The removal of the filter results

in a large tissue overdose and a poor match between the prescribed and delivered dosages.

3.4 Sampling Effects and Beam Front Filtering

In practice, the beam front ),( sf θ  in equation (15) must be sampled in both angle θ  and beam

front s  coordinates. The beam front filters 1−
−µI  and 1−

µκ  effectively boost high spatial frequencies,

so it is expected that the Nyquist sampling condition (Oppenheim 1978), 
s

W
∆

= π2
max , where s∆  is

the beam front sampling increment, will impose a sharp frequency cutoff, maxW , on the filtered beam.

The other frequency scale in the problem, due to sampling in θ , is the “Bow Tie” condition in

equation (22), 
R
NW

π
2

max =′ , which depends on the size and spatial frequencies in the delivered dose.

In tomographic imaging, an additional weighting function or taper reducing high frequencies is

usually applied to the beam front filter to mitigate measurement noise (see figure 8). Tapered filters

have also been used in tomographic IMRT (Bortfeld et al 1990, Mackie et al 1993, Holmes and

Mackie 1994, Levine et al 1999) and their fall-off has been tied to the “Bow Tie” frequency bound.

The taper reduces the effect of filter “ringing” or Gibb’s phenomenon which would occur with a

square frequency window. The result is a smoothing of the filtered beam front and reduced

inhomogeneities in the delivered dose. However, dose prescriptions typically have high frequency
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content, a fixed value on the tumor and zero elsewhere, and their projections may not be band-

limited (Bortfeld and Boyer 1995). Consequently, tapering reduces high frequency inhomogeneities

on the tumor, but at the expense of a low frequency spread of  the dose. The spread causes added

exposure to the surrounding tissues and some variation of the dose over the tumor which in a clinical

setting is to be avoided. To compensate for this, we have modified the filtering process for “hard-

edged” dose prescriptions. The taper is replaced by an averaging over the filtered projection and the

addition of a small dc component to the non-zero part of the positively constrained filtered

projection. (Gaussian dose prescriptions which are low frequency band-limited functions effectively

taper the high frequency filter automatically.) This results in good homogeneity across the tumor and

dose edges that are very sharp, while diminishing high frequency filter “ringing”. The introduction

of a dc component to the IMRT beam filter has been discussed in Bortfeld and Boyer 1995. We also

note that related approaches have used iterative schemes to build in a dose edge (Bortfeld et al 1990).

Preferred beam directions, the retention of high frequencies in the projected dose, and the

addition of a dc component are better understood when the problem is cast into frequency space

sampling using the 0→µ  Projection-Slice Theorem in equation (17). Figure 9 contains a sketch

of the magnitude of the 2D Fourier transform of the Gaussian ellipse prescribed dose in equations

(30) and (31) elongated in the x -direction. From equation (17) the frequency space samples of the

beam at angle θ  directly sample the θ -slice through the function. Note that the elongation of the

tumor in the x -direction corresponds to an elongation of its 2D transform in the frequency space yk -

direction. Consequently, sampling this function in the angle range indicated, with the implicit

zeroing of samples outside the cone, is most efficient. The Fourier transform of a similarly oriented

“hard edged” dose prescription, defined with constant value within an elliptical shape and zero
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elsewhere as discussed in Section 4, would have similar properties. The linear frequency filter, 1−
−µI ,

which was derived assuming continuous sampling in angle, compensates for the over-sampling at

low frequencies and the linear decrease in sample density with distance from the origin. However,

due to clinical implementation and delivered dose constraints the beam numbers can be very small

(5-9), and the sampling density argument for 1−
−µI  then breaks down, suggesting either the removal

or modification of the filter (Bortfeld and Boyer 1995). The addition of a dc component  thus

partially compensates for the use of relatively low beam numbers. However, for limited sampling

in angle, it would also seem beneficial to retain the largest frequency range possible. 

The classical “Bow Tie” condition in equation (22) is an extremely conservative bound for a

situation where the reconstructed function is not known apriori. In this case, uniform sampling of

),(ˆ
yx kkP  in angle and frequency over the indicated range is warranted. However, in a situation

where the function ),(ˆ
yx kkP  is known, a ),( kθ  representation of P̂  in Gabor or wavelet (Gabor

1946, Harpen 1998) functions with the application of a local Nyquist condition should allow for the

design of optimum angle sampling and θ -dependent beam front filters.

4. “Hard-edged” Elliptical Dose Functions

At the present time tumor dose prescriptions are typically single- (or at most, double-) valued

functions reflecting an estimated threshold for local control. The goal is for dose homogeneity on

the tumor with a sharp dose edge at the boundary with normal tissue. In this section the IMRT

tomographic formalism developed in Section 2 is applied to this type of dose prescription. In order

to judge conformation to a single-valued dose prescription the dose-volume-histogram (DVH) is

computed. The cumulative DVH is defined as the percent volume less than a delivered dose value
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versus the dose (Drzymala et al 1991). Perfect dose conformation corresponds to a step function for

the tumor DVH; and the goal of minimum tissue exposure corresponds to the tissue DVH at small

values of the dose and exposed volume.

In Section 4.1, simple convex prescribed dose shapes are examined to illustrate “beam selection”

based on the beam overlap metric. By selecting beams where the metric is largest, a delivered dose

can be achieved which approaches the results for larger numbers of evenly spaced beams. Section

4.2 extends these ideas to more complicated concave prescribed dose shapes which can surround a

sensitive organ. For these more complicated shapes, beam selection is less pronounced. However,

it is shown that it is crucial to include beam directions where the metric is large, especially for low

numbers of beams.

4.1 Convex Dose Functions

Figure 10 shows results for a “hard ellipse” dose prescription defined to be 1.0 inside a set of

points (x,y) such that

12

2

2

2

<+
b
y

a
x (45)

and zero elsewhere. We consider the case of a = 4.0cm and b = 0.5cm. Delivered dose contours are

shown for 8, 4 and 2 evenly spaced beams between 00 and 1800. As seen in the tumor DVH, all beam

number results show good homogeneity on the tumor. The surrounding normal tissue (SNT) is

defined as the area within 1cm of the tumor boundary. At higher doses, the SNT DVH shows that

the 8 and 4 beam exposed volumes are nearly zero, and the 2 beam exposure is about 10 % of the

volume. This mainly comes from the heavy weighting of the 900 beam, and the inability of just two

beams to carve out the elliptical shape near the dose edge. Starting at about 60 % of the prescribed
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dose, however, the SNT DVH for 2 beams is actually superior. This arises from the limited angle

in tissue exposed by the 00 and 900 beams. Clearly, from the contours and DVHs there is a saturation

effect: as the number of beams is increased the contours are more conforming, and more of an

elliptical shape is reproduced in the delivered dose. However, there is also a trade-off between high

and low dose contributions in the SNT DVH with the number of beams which comes about from the

definition of the SNT. Figure 10 shows the beam metric for this prescribed dose which, like the

Gaussian or “soft” ellipse, is heavily weighted toward the narrow directions (900 and 2700). The

results for 4 beams placed between 700 and 1100, where the beam metric is largest, is also shown.

The SNT DVH for this “metric” beam configuration has almost zero volume for high dose, like the

4 and 8 evenly spaced beams, and is also small for the low dose like the 2 beam result. The clustering

near 900 for the “metric” beams limits tissue exposure like the 2 beam result, but is also very

conforming like the 4 and 8 evenly spaced beam results. Overall, the “metric” beams appear to be

in a superior configuration.

     The interpretation of tomographic IMRT as a frequency space sampling problem applies as well

to “hard” dose prescriptions. The 2D Fourier transform of the hard ellipse dose prescription

]1)/()/[( 22 −+Ω byax  in equation (45) is given by
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where 1J  is the first order Bessel function and ),( yx kk  is the frequency space coordinate (see

Gradshetyn and Ryzhik 1965 reference). This function requires more complicated sampling than the

Gaussian in equation (31) because 1) the asymptotic fall-off for large arguments (Gradshetyn and

Ryzhik 1965) is proportional to the more gradual function 4/32222 )( −+ yx kbka , and 2) the 1J -function
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oscillates. The oscillatory behavior of 1J  suggests the need for higher frequency space sampling,

even though the general shape of ),(ˆ
yx kkΩ is the same as in Figure 9.

Figure 11 illustrates the importance of the filter in achieving a conforming dose. Beam fronts,

contour plots and DVH’s are shown for 50 beam plans (above beam number saturation) with and

without beam front filtering for the “hard ellipse”. The beam front without filtering is simply the

projection of the prescribed dose, and at 00 is parabolic with the maximum in the center. The beam

front after application of the filter and dose constraint is quite flat, similar to the analytic result for

a disk (Bortfeld and Boyer 1995). The beam front filter thus creates a sharp dose edge and uniform

dose across the tumor. The importance of including the filter is clear when the delivered dose

contour plots, and tumor and SNT DVH’s are examined. For this case the SNT region is defined to

be 2cm around the tumor boundary. Due to large dose inhomogeneity on the tumor for the no-filter

case, we have normalized the dose to be greater than or equal to the prescribed dose over 100 % of

the tumor volume. The tumor SNT for the no-filter case varies by a factor of two over the tumor,

while the filtered results vary by about 20 %. The SNT results are also superior in the filtered case

for the entire volume. In general it was found that removing the filter or significantly decreasing the

high frequency content of the projected dose also removed the benefits of beam orientation selection.

Figure 12 shows results for a “peanut-shaped” tumor consisting of two overlapping spheres with

radii of 1.0cm, meant as a prototype for cranial tumors treated with two isocenters (Shiu et al 1997).

As with the hard ellipse, the contour plots appear to achieve a more conforming dose with increasing

beam numbers. The 24 beam delivered dose approaches the beam number saturation point for

reconstruction of the prescribed dose as judged by the dose contours, although the 8 beam result is

nearly as good as judged by the DVHs. Homogeneity over the tumor volume for all dose
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prescriptions is very good. As in the ellipse case, the 24 and 8 beam SNT DVH’s show slightly less

exposure for high dose compared to the 4 beam result. Although the beam overlaps (not shown) were

most heavily weighted at the 900 and 2700 directions, as with the ellipse, the magnitudes were not

much greater than the other directions. Accordingly, very weak beam orientation selectivity was

found, and it was not clear if these delivered doses were superior to the equally spaced beams from

00 to 1800.

Figure 13 shows results for a hard ellipse with a nearby spherical organ-at-risk. The tumor ellipse

has a = 2.4cm and b = 1.2cm. The organ-at-risk has a radius of 1.0cm and is separated by 0.5cm of

normal tissue from the tumor. To reduce dose to the organ-at-risk, an unphysical prescription of –1.0

was assigned to it. Results are shown for 24, 8, and 4 evenly spaced beams and 4 selected beams

between 600 and 1200. As with the other shapes for evenly spaced beams, the results improve with

larger beam numbers, and reach a saturation level somewhere between 8 and 24 beams, with the

exception that the 4 evenly spaced beams have less organ-at-risk dose at very low doses. Like the

ellipse discussed above, the beam selection metric is most heavily weighted in the 900 direction. The

presence of the organ-at-risk in this case reduces the importance of the 00 direction compared to the

tumor alone. A “selected” four beam plan between 600 and 1200 has a dose variation of less than

10% over the tumor and markedly less organ-at-risk dose than any of the other plans. In this case the

directions which contribute most to a conforming dose minimize exposure to the organ-at-risk,

effectively decreasing from 24 to 4 the number of beams required to achieve a conforming dose.

4.2 Concave Dose Functions

Figure 14a shows a “butterfly” shaped prescribed dose, consisting of two overlapping ellipses.

This case is similar to a case examined by Bortfeld and Schlegel 1993 and many other investigators.
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In their study Bortfeld and Schlegel 1993 found through a simulated annealing search over angles

that for three beams the optimal beam directions were roughly along the long axes of the two ellipses

and along one of the diagonals to these axes. We note that these directions along the long axes are

the preferred directions seen in the convex single ellipse case examined above. In the figure this

would correspond to directions 00 (north-south) and 900 (east-west) for the long axes along the

ellipses, and 1350 (northeast-southwest) for the diagonal. A plot of the metric overlap function for

this prescribed dose in figure 14e shows that this function is largest along these same directions,

although in general for concave shapes the metric functions are much less dependent on angle than

for the simpler convex prescribed doses examined above. Figure 14b shows a colorwash of the

delivered dose for three “metric” beams oriented along these directions. To show the importance of

beam placement figure 14c shows the delivered dose for the same directions as figure 14b, except

that the most important beam (the 1350 beam along the diagonal) has been moved to be along the

opposite diagonal (northwest-southeast) at 450 which is a minimum of the dose metric function. The

resulting delivered dose is less conforming with much more dose to the surrounding normal tissue.

To underscore this point, figure 14d shows the delivered dose for three beams clustered near the

minimum of the overlap metric at angles 200, 450, and 700. The delivered dose appears much poorer

in this colorwash plot. These differences are quantified in figures 14f and 14g which show the tumor

and surrounding-normal-tissue (SNT) DVH’s, respectively, for the beam arrangements in figures

14a-c. The SNT extends about 1.5 times beyond the size of the tumor prescribed dose. The tumor

DVH’s are all similar. For the beams clustered near the overlap minimum (figure 14d), there is high

dose over a substantial part of the SNT. This improves with the better beam placement of figure 14c,

and is the best with the optimal beam placement of figure 14b, where the beam overlap metric is

largest, although for low doses the results of  figure 14d are actually better due to the more limited
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angle space of this plan. We find that for larger numbers of beams, the delivered dose is much less

sensitive to beam positions, and this agrees with the results of Bortfeld and Schlegel 1993.

Figure 15a shows the prescribed dose function for a “horseshoe” shaped tumor surrounding an

organ-at-risk. The prescribed dose for the tumor is set to 1.0. To reduce dose to the organ-at-risk an

unphysical dose prescription of –0.1 was assigned to it. Like the “butterfly” tumor examined above,

we have found that above a certain number of beams, beam placement is not significant, as long as

they evenly cover the angle space. Figure 15b shows the delivered for 12 evenly spaced beams from

00 to 1800 which results in a good conforming dose. However, for lower numbers of beams it is

important to explicitly include the directions where the beam metric overlap function is large. Figure

15e shows the beam overlap function for this prescribed dose which has maxima along the 00 (north-

south) and 900 (east-west) directions. These are along the long-axes of the component ellipses which

make up the prescribed dose function. Figure 15c shows the delivered dose for 6 “metric” beams

evenly spaced so that the metric angles 00 and 90o are included (00, 300, 600, 900, 1200, 1500). In

contrast figure 15d shows the delivered dose for 6 beams evenly spaced but not including the metric

angles (150, 450, 750, 1050, 1350, 1650). This delivered dose appears less conforming than the 6

“metric” based plan of figure 15c. These differences are evident in the DVH’s shown in figures 15f-

h. The tumor DVH for the 12 beam plan is the most uniform and the 6 beam plan shifted from the

“metric” directions, figure 15d, is the least. The organ-at-risk DVH’s are all similar. For the SNT

DVH the 6 metric beam delivered dose is actually slightly better than the twelve beam plan, but this

is probably due to including a very limited part of the tissue space in the SNT.
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5. Conclusions

We have reviewed and extended the theory of tomographic dose reconstruction. We derive the

basis for a saturation with beam number of dose conformation, and provide an analysis which ranks

particular beam orientations in terms of the contribution to the delivered dose. Preferred beam

directions are found which effectively reduce the number of beams necessary to achieve a given level

of dose conformation. This is done by formally connecting the problem to the tomographic Fourier

space sampling of the prescribed dose function. The analysis is a new and unique application of the

tomographic Projection-Slice Theorem to the problem of beam orientation determination. Results

are applied to simple geometric shape dose prescriptions in two dimensions: a Gaussian ellipse

where analytical results can be obtained and a series of hard-edged convex shapes to illustrate beam

selection based on the beam overlap metric. More complex concave prescribed dose shapes which

contain a sensitive organ are also analyzed, and for low beam numbers are found to have preferred

beam directions. The effects of the beam front filter and the positivity constraint are also analyzed.

While this constraint results in unavoidable normal tissue exposure, these effects are small and the

tomographic approach is superior to dose projection alone.

The modulation of a two-dimensional beamfront, the development of high resolution collimators

for intensity modulated radiosurgery (Cardinale et al. 1998), and non-coplanar radiotherapy all

suggest the need to examine 3D IMRT. Even for treatments with a cylindrical axis of symmetry, it

is likely that the optimum 2D beam locations will vary between slices. A fully three-dimensional

analysis of projection IMRT, involving the 3D Fourier transform of the prescribed dose function and

spherical harmonic expansions with a generalized Projection-Slice Theorem, has appeared in Levine

et al. 1999. The examples studied suggest that higher levels of dose conformation are possible, beam
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selection is important, and beam numbers are comparable to 2D treatments. A systematic

examination of preferred directions and sufficient beam numbers for 3D dose prescriptions using the

tomographic approach is the focus of our current research. These results could provide a robust

starting point for more refined global search methods for optimum beam numbers and directions in

three dimensions.

While this manuscript was being prepared Oelfke and Bortfeld 1999 discovered alternative

solutions to the tomographic IMRT problem. For µ=0 the solutions of  Eq. (15) are symmetric for

opposing beams; a condition that can be lifted for possible enhanced dose conformation. An

examination of beam orientation selection involving this more general class of solutions is an

interesting area of future research.

Acknowledgments:

We would like to thank Dr. Y.C. Lo for suggesting the use of the surrounding normal tissue

(SNT) DVH as a measure of dose conformation. Drs. M.M. Urie and Y.C. Lo are also thanked for

discussions on clinical applications of IMRT tomographic inversion. This work was supported by

the NIH small business innovative research (SBIR) program, grant number 1R43CA82027-01.



33

References

1. Boyer A L 1994 Radiation Therapy Beam Modulation Techniques Syllabus: A Categorical

Course in Physics: Three-dimensional Radiation Therapy Treatment Planning eds J A Purdy and

B A Fraas (Oak Brook, Il: RSNA Publications)

2. Bortfeld T and Boyer A L 1995 The Exponential Radon Transform and Projection Filtering in

Radiotherapy Planning  Int. J. Imaging Systems and Technology 6 62-70

3. Bortfeld T, Burkelbach J, Boesecke R, and Schlegel W 1990 Methods of image reconstruction

from projections applied to conformation radiotherapy Phys. Med. Biol. 35 1423-1434

4. Bortfeld T and Schlegel W. 1993 Optimization of beam orientations in radiotherapy: some

theoretical considerations Phys. Med. Biol. 38 291-304

5. Bortfeld T, Kahler D, Waldron T, and Boyer A  1994 X-ray Field Compensation with Multileaf

  Collimators Int. J. Radiation Oncology Biol. Phys. 23 723-730

6. Bortfeld T, et.al. 1994 Realization and verification of three-dimensional conformal radiotherapy

with modulated fields Int. J. Radiat. Oncol. Biol. Phys. 30 899-908

7. Brahme A, Roos J E, and Lax I 1982 Solution of an integral equation encountered in rotation

therapy Phys. Med. Biol. 27 1221-1229

8. Cardinale R M, Benedict S H, Wu Q, Zwicker R D, Gaballa H E, and Mohan R 1998 A

Comparison of three Stereotactic Radiotherapy Techniques; Arcs vs. Noncoplanar Fixed Fields

vs. Intensity Modulation Int. J. Radiation Oncology Biol. Phys. 42 431-436

9. Censor Y, Altschuler M D, and Powlis W D 1988 A Computational Solution of the Inverse

Problem in Radiation-Therapy Treatment Planning Applied Mathematics and Computation 25

57-87



34

10. Cho P, Lee S, Marks R J, Oh S, Sutlief S G, and Phillips M H 1998 Optimization of intensity

modulated beams with volume constraints using two methods: Cost function minimization and

projections onto convex sets Med. Phys. 25 435-443

11. Cormack A M 1987 A Problem of Rotation Therapy with X-rays Int. J. Radiat. Oncol. Biol.

Phys. 13 623-630

12. Cormack R A 1998 Beam Profiles for X-ray Rotation Therapy Med. Phys. 25 879-884

13. Cormack A M and Cormack R A 1987 A Problem in Rotation Therapy II: Dose Distributions

with an Axis of Symmetry Int. J. Radiat. Oncol. Biol. Phys. 13 1921-1925

14. Cormack A M and Quinto E T 1989 On a Problem in Radiotherapy: Questions of Non-negativity

Int. J. Imaging Syst. Technol. 1 120-124

15. Cormack A M and Quinto E T 1990 The Mathematics and Physics of Radiation Dose Planning

using X-rays Contemporary Mathematics 113 41-55

16. Crowther R A, DeRosier D J, and Klug A 1970 The reconstruction of a three-dimensional

structure from projections and its application to electron microscopy Proc. Roy. Soc. Lond. A.

317 319-340

17. Drzymala R E, Mohan R, Brewster L, Chu J, Goitein M, Harms W, and Urie M M 1991 Dose-

Volume Histograms Int. J. Radiat. Oncology Biol. Phys. 21 71-78

18. Gabor D 1946 The Theory of Communication J. Inst. Elec. Eng. 93 429-457

19. This follows from the generating integral for Bessel functions and the differential equation

relating the order zero and one Bessel function, 01)( zJzJ =′ , found in Gradshetyn I S and Ryzhik

I M 1965 Tables of Integrals, Series and Products (New York, NY: Academic Press).

20. Gregerson E A, Levine R Y, and Urie M M 1995 Beam Sampling and Selection for 3D

Conformal Radiotherapy (abstract) Med. Phys. 22 920



35

21. Haas O C L, Burnham K J, and Mills J A 1998 Optimization of beam orientation in radiotherapy

using planar geometry Phys. Med. Biol. 43 2179-2193

22. Harpen M D 1998 A Introduction to Wavelet Theory and Application for the Radiological

Physicist Med. Phys. 25 1985-1993

23. Holmes T and Mackie T R 1994 A filtered backprojection dose calculation method for inverse

treatment planning Med. Phys. 21 303-313

24. Johns H E and Cunningham J R 1983 The Physics of Radiology, Fourth Edition (Springfield,

Il:Thomas)

25. Lee S, Cho P S, Marks R J, and Oh S 1997 Conformal radiotherapy computation by the method

of alternating projection onto convex sets Phys. Med. Biol. 42 1065-1086

26. Levine R Y, Gregerson E A, and Urie M M 1999 The application of the x-ray transform to 3D

conformal radiotherapy Computational Radiology and Imaging: Therapy and Diagnostics ed C

Borgers and F Natterer (New York NY: Springer-Verlag)

27. Lindgren A G and Rattey P A 1981 The Inverse Discrete Radon Transform with Applications

to Tomographic Imaging Using Projection Data  Advances in Electronics and Electron Physics,

56 359-410

28. Llacer J 1997  Inverse radiation treatment planning using the Dynamically Penalized Likelihood

method Med. Phys. 24 1751-1764 (1997)

29. Mageras G S and Mohan R 1993 Application of fast simulated annealing to optimization of

conformal radiation treatments Med. Phys. 20 639-647

30. Mackie T R, Holmes T, Swerdloff  S, Reckwerdt P, Deasy J, Yang J, Paliwal B, and Kinsella

T 1993 Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy Med.

Phys. 20 1709-1719



36

31. Medoff B P 1987 Image Reconstruction from Limited Data: Theory and Applications in

Computerized Tomography Image Recovery: Theory and Application ed H Stark (New York,

NY: Academic Press)

32. Natterer F 1986 The Mathematics of Computerized Tomography (New York, NY:J Wiley and

Son)

33. Niemierko A 1992 Random search algorithm (RONSC) for optimization of radiation therapy

with both physical and biological end points and constraints Int. J. Radiation Oncology Biol.

Phys. 23 89-98

34. Oelfke U and Bortfeld T 1999 Inverse planning for x-ray rotation therapy: a general solution of

the inverse problem Phys. Med. Biol. 44 1089-1104

35. Oldham M, Khoo V S, Rowbottom C G, Bedford J L, and Webb S 1998 A case study comparing

the relative benefit of optimizing beam weights, wedge angles, beam orientations and

tomotherapy in stereotactic radiotherapy of the brain Phys. Med. Biol. 43 2123-2146

36. Oppenheim A V 1978 Applications of Digital Signal Processing (Englewood Cliffs, N.J.:

Prentice Hall)

37. Rosen I I, Lane R G, Morill S M, and Belli J A 1991 Treatment plan optimization using linear

programming Med. Phys. 18 141-152

38. Rowbottom C G, Webb S, and Oldham M 1998 Improvements in prostate radiotherapy from the

customization of beam directions Med. Phys. 25 1171-1179

39. Shiu A S, Kooy H M, Ewton J R, Tung S S, Wong J, Antes K, and Maor M H 1997 Comparison

of Miniature Multileaf Collimator (MMLC) with Circular Collimation for Stereotactic Treatment

Int. J. Radiation Oncology Biol. Phys. 37 679-688



37

40. Soderstrom S and Brahme A 1993 Optimization of dose delivery in a few field techniques using

radiobiological objective functions Med. Phys. 20 1201-1210

41. Spirou S V and Chui C-S 1998 A gradient inverse planning algorithm with dose-volume

constraints Med. Phys. 25 321-332

42. Stein J, Mohan R, Wang X-H, Bortfeld T, Wu Q, Preiser K, Ling C C, Schlegel W 1997 Number

and orientations of beams in intensity-modulated radiation treatments Med. Phys. 24 149-160

43. Webb S 1989 Optimisation of conformal radiotherapy dose distributions by simulated annealing

Phys. Med. Biol. 34 1349-1370

44. S. Webb 1991 Optimisation of conformal radiotherapy dose distributions by simulated annealing:

2. Inclusion of scatter in the 2D technique Phys. Med. Biol. 36 1227-1237

45. Webb S 1993 The Physics of Three-dimensional Radiation Therapy, Conformal Radiation

Therapy, Radiosurgery, and Treatment Planning (Philadelphia: IOP Publishing)



38

θ
⊥θ

θ⋅= xsτ
x d

0R

Beam θ

Figure 1.  Geometry of 2D IMRT Tomographic Inversion.
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Figure 2. Dose Deposition Model for 2D Tomographic IMRT. The small ellipses within the
tumor are dose kernels, κ(x), centered on a dose deposition point for the rays depicted
as arrows for beam directions θ and θ’.



39

Frequency (k) Frequency (k)

|G2m| |G2m|

(a) (b)m = 0

m = 10
m = 10

m = 0

Figure 3. Absolute value of Gaussian ellipse cylindrical harmonics  versus frequency. (a) for the
case (a,b)=(5,1). ( b) for the case (a,b)=(10,1).
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Figure 4. (a) Polar plot of beam selection metric for Gaussian ellipse with a=4.0cm and
b=0.8cm. The metric has been normalized to maximum of 1.0. The zero degree
direction corresponds to fluence traveling from the bottom to the top of the figure. (b)
Contour plot of prescribed dose for the a=4.0cm and b=0.8cm Gaussian ellipse.
Contours are at .1,.3,.5,.7 and .9.
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Figure 5. (a-d) Isodose contours for Gaussian ellipse described in figures 4a-c. Contours for 50,
18, and 10 beams equally spaced in angle from 0o to 180o. (d). Contours for 10 evenly
spaced beams in the range 45o - 135o. (e-h) Scatterplots of prescribed versus delivered
dose for the contours in (a-d), respectively. Contours are at 0.1, 0.3, 0.5, 0.7 and 0.9.
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Figure 6. Modulated 00 beam fronts for the Gaussian ellipse with a=4.0cm and b=0.8cm (a) with
beam front filtering and (b) without beam front filtering. Shaded areas are values of
the beam front removed by the positivity constraint. Beams are normalized to
maximum of 1.0.
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Figure 7. (a) Isodose contours of the delivered dose for the Gaussian ellipse without beam front
filtering for 50 equally spaced beams. Contours at .1, .3, .5, .7, and .9. (b) Prescribed
versus delivered dose for the Gaussian ellipse without beam front filtering for 50
equally spaced beams.
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Figure 8.  Beam front filter versus frequency.
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Figure 9. Sketch of 2D Fourier transform and beam sampling of elliptical prescribed dose
function. Beam fronts along the “metric” East-West directions correspond to sampling
along the ky axis.
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Figure 10. (a-d) Prescribed and delivered dose colorwash images for a “hard ellipse with a=4.0cm
and b=0.5cm with 8, 4, and 2 equally spaced beams in angle range 00 to 1800. (e)
Beam selection metric for “hard” ellipse normalized to maximum of 1.0. Zero degrees
from the bottom of the page. (f) Delivered dose using 4 beams selected between 70o

and 110o. (g-h) Dose-Volume Histograms (DVH) for tumor and Surrounding Normal
Tissue (SNT) for 8 beams (+), 4 beams (o), 2 beams (.), 4 metric beams (*).
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Figure 11. (a-b) Results for “hard” ellipse with beam filtering for 50 evenly spaced beams
between 00 and 1800. (a) Beam front at 00; (b) isodose contours at 0.1, 0.3, 0.5, 0.7,
and 0.9; (d-e) Same as (a-b) without beam front filtering.  (c) tumor DVH for 50 even
beams with filtering (+) and without filtering (*); (f) same as (c) for SNT DVH.
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Figure 12. Results for “peanut” shaped tumor consisting of two overlapping spheres with radii
of 1.0 cm. (a-c) Colorwash images for 24, 8, and 4 beams evenly spaced between 00

and 1800. (d) prescribed dose for “peanut” shaped tumor; (e) tumor DVH for 24 even
beams (+), 8 even beams (o), 4 even beams (.); (f) same as (e) for surrounding normal
tissue.
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Figure 13. Results for hard ellipse tumor with spherical organ-at-risk; (a) prescribed dose function
where tumor ellipse has a = 2.4cm and b = 1.2cm. The organ-at-risk has a radius of
1.0cm and has 0.5cm of normal tissue between it and the tumor. (b-d) Colorwash
images for 24, 8, and 4 beams evenly spaced between 0o and 180o respectively; (e)
Delivered dose for 4 beams selected between 60o and 120o (f) tumor DVH for 24 even
beams (+), 8 even beams (o), 4 even beams (.), and 4 selected beams (*); (g) same as
(f) for organ-at-risk; (h) same as (f) for surrounding normal tissue.



47

0

1

prescribed
dose

3 metric
beams

3 even
beams 3 beams

tumor snt

(a) (b) (c) (d)

(e)
(f) (g)

dose

%
 V

(e)

Figure 14. Results for “butterfly” shaped tumor consisting of two overlapping ellipses; (a)
prescribed dose function. (b-d) Delivered dose colorwash images for three beams at
(00, 900, 1350), (00, 450, 900), and (200, 450,700), respectively. (e) Beam selection
metric for prescribed dose normalized to maximum of 1.0. Zero degrees points to the
bottom of the page. (f) tumor DVH for three beams at (00, 900, 1350) (+), three beams
at (200, 450,700) (o), and three beams at (200, 450,700) (.), (g) same as (f) except for
surrounding normal tissue.
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Figure 15. Results for “horseshoe” shaped tumor surrounding an organ-at-risk; (a) prescribed
dose function. (b-d) Delivered dose colorwash images for 12 evenly spaced beams,
6 “metric” beams, and 6 beams displaced away from the metric angles; respectively.
(e) Beam selection metric for prescribed dose normalized to maximum of 1.0. Zero
degrees points to the bottom of the page. (f) tumor DVH for 12 evenly spaced beams
(+), 6 “metric” beams (o), and 6 beams displaced away from the metric angles (.); (g)
same as (f) except for organ-at-risk.  (h) same as (f) except for surrounding normal
tissue.
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