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Remote Bathymetry of the Littoral Zone From
AVIRIS, LASH, and QuickBird Imagery

Steven M. Adler-Golden, Prabhat K. Acharya, Alexander Berk, Michael W. Matthew, and David Gorodetzky

Abstract—An efficient, physics-based remote bathymetry
method for the littoral zone is described and illustrated with
applications to QuickBird, Littoral Airborne Sensor: Hyper-
spectral (LASH), and Airborne Visible/Infrared Spectrometer
(AVIRIS) spectral imagery. The method combines atmospheric
correction, water reflectance spectral simulations, and a linear
unmixing bathymetry algorithm that accounts for water surface
reflections, thin clouds, and variable bottom brightness, and can
incorporate blends of bottom materials. Results include depth
maps, bottom color visualizations, and in favorable cases, ap-
proximate descriptions of the water composition. In addition,
atmospheric correction was advanced through new capabilities
added to the Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) and Moderate Resolution Transmittance
(MODTRAN) codes, including characterization of the aerosol
wavelength dependence and a discrete-ordinate-method radiative
transfer scaling technique for rapid calculation of multiply scat-
tered radiance.

Index Terms—Algorithms, compensation, hydrology, hyper-
cubes, optical image processing, remote sensing, satellite applica-
tions, sea coast, spectral analysis, underwater object detection.

I. INTRODUCTION

REMOTE spectral imaging of the littoral zone (LZ) can
provide valuable information for characterizing coastal

waters. The use of multispectral imagery (MSI) from satellite
sensors such as Landsat, the Sea-viewing Wide Field-of-view
Sensor (SeaWIFS), the Moderate Resolution Imaging Spec-
troradiometer (MODIS), the Multi-angle Imaging SpectroRa-
diometer (MISR), and others has been established for many
applications, including retrieving water chlorophyll and approx-
imate water depth. With the advent of hyperspectral imaging
(HSI) sensors such as the Airborne Visible/Infrared Spectrom-
eter (AVIRIS), Hyperion, the Hyperspectral Mapper (HyMap),
the Hyperspectral Digital Imagery Collection Experiment (HY-
DICE), and others, which typically cover the solar wavelength
region ( – m) in or more spectral channels, there
is the potential to retrieve much more information; applications
include identifying and characterizing underwater objects and
materials and mapping water depth to within a meter or better.
However, achieving these goals requires overcoming a number
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of challenges. Water-leaving radiance is difficult to determine
accurately, as it is often small compared to reflected radiance
from sources such as atmospheric and water surface scattering,
and it is subject to uncertainties in the sensor’s radiometric cali-
bration. Unknown bottom materials and water composition can
reduce the bathymetry accuracy. In addition, limited “ground
truth” bottom spectra and depths restrict the ability to evaluate
performance of the retrieval algorithms.

This paper describes an efficient, physics-based remote
bathymetry method for the LZ that uses minimal ground truth
input, and presents results for three different hyperspectral
and multispectral sensors at two locations. The data consist of
QuickBird satellite and Littoral Airborne Sensor: Hyperspectral
(LASH) aircraft-based imagery of Kaneohe Bay, HI, where
recent, high spatial resolution ground-truth bathymetry data
from the Scanning Hydrographic Operational Airborne Lidar
Survey (SHOALS) lidar system are available, and a 20-km-al-
titude AVIRIS image of Tampa Bay, FL, where there are older
bathymetry data from the National Ocean Service (NOS). Our
method uses a first-principles atmospheric correction algorithm,
described in Section II, and simulations of water reflectance
spectra, described in Section III, together with a linear unmixing
algorithm for depth and bottom retrieval, described in Section IV.
The retrieval algorithm accounts for water surface reflections
and variable bottom brightness and can be readily extended to
include blends of different bottom materials.

The present work has similarities to as well as differences
from previous remote bathymetry approaches. Sandidge and
Holyer [1] cite a number of bathymetry algorithms that have
been developed since the 1960s for multispectral sensors,
including Landsat Thematic Mapper, and they present a new
neural net-based method for hyperspectral imagery. Their
method requires an extensive training set of spectra with known
depths and a variety of bottom spectra, which may be provided
from either measurements or simulations. Lee et al. [2] devel-
oped a first-principles bathymetry algorithm for hyperspectral
data that uses parameterized simulations from Hydrolight [3],
and applied it to an AVIRIS image of shallow water (0–4-m
depth) with good success. In their method, atmospherically
corrected (or “compensated”) data are least squares fit to
simulations using a five-dimensional nonlinear optimization
algorithm in which depth, bottom brightness, and water proper-
ties (gelbstoff, turbid scattering, and phytoplankton) are varied.
Most recently, Wozencraft et al. [4] analyzed Kaneohe Bay data
from LASH and SHOALS using a semiempirical algorithm
applicable to a fully illuminated sand bottom. Their algorithm
requires some known depths and loses accuracy when shadows
are present.

0196-2892/$20.00 © 2005 IEEE
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Our present algorithm most closely resembles that of Lee
et al. [2]. It uses atmospherically corrected data, retrieves bottom
brightness as well as depth, is physics-based, and is general
enough to be applicable to many different types of imaging
sensors. However, it makes the simplifying assumption of
constant water optical properties within the scene. This avoids
some ambiguities in separating the effects of different depths,
bottom materials, and water types (e.g., turbid water scattering
is difficult to distinguish from a shallower bottom.) In addition,
this simplification improves the computational speed by an
order of magnitude and allows the algorithm to be applied to
four-channel MSI data, such as from QuickBird and IKONOS,
as well as to HSI data. The algorithm also corrects for spectrally
flat reflections from surface glint, foam, and thin clouds by taking
advantage of one or more infrared channels, even when there is
some contamination from water-leaving radiance. As part of this
research, we investigated the problem of obtaining an accurate
atmospheric correction in the LZ when ground truth reflectances
are unavailable, and developed some improved methods for
treating aerosol effects as well as a somewhat more accurate
parameterization of water-leaving reflectance.

II. ATMOSPHERIC CORRECTION

A. Overview

Atmospheric correction transforms measured radiance
spectra into surface reflectance spectra. First-principles atmo-
spheric correction typically consists of three steps. The first is
the retrieval of atmospheric parameters, most notably an aerosol
description (the visibility or optical depth, and, if possible, an
aerosol “type”) and the column water amount. Current methods
allow aerosol retrieval over a very limited set of surface types
(deep clear water and dark land); most often, retrieval of only
a scene-average visibility is attempted. On the other hand,
the spectral signature of water vapor is sufficiently distinct
that the column amount may be retrieved on a pixel-by-pixel
basis. The second step in the correction is the solution of the
radiation transport (RT) equation for the given aerosol and
column water vapor and transformation to reflectance. Finally,
an optional postprocessing step called spectral polishing [5],
[6] has been shown to remove many artifacts remaining after
the physics-based correction is complete.

This section outlines the implementation of the first two steps
in the Fast Line-of-sight Atmospheric Analysis of Spectral Hy-
percubes (FLAASH) atmospheric correction algorithm [7], [8]
which we used to process the LZ data. FLAASH has been de-
veloped collaboratively by Spectral Sciences, Inc., the Air Force
Research Laboratory, other U.S. government agencies, and Re-
search Systems, Inc. (RSI). A commercial version of FLAASH
is available from RSI as part of their ENVI software package.

B. Radiance Equation

The FLAASH atmospheric correction is based on a standard
RT equation for spectral radiance at a sensor pixel in the
solar wavelength range (neglecting thermal emission) from a flat
Lambertian surface or its equivalent [9]. Collecting constants
reduces the equation to the form

(1)

Here, is the pixel surface reflectance, is a surface reflectance
averaged over the pixel and a surrounding region, is the spher-
ical albedo of the atmosphere, is the radiance backscattered
by the atmosphere, and and are coefficients that depend on
atmospheric and geometric conditions but not on the surface.
Each of these variables depends on the spectral channel; the
wavelength index has been omitted for simplicity. The first term
on the right-hand side of (1) is the radiance reflected from the
surface that travels directly into the sensor. The second term
is the radiance reflected from the surface that is scattered by
the atmosphere into the sensor, resulting in a spatial blending,
or adjacency effect [10]. Both FLAASH and the ATCOR code
[11] solve the full (1) and thus account for this effect. However,
many other atmospheric correction codes (e.g., ACORN [12],
HATCH [13]) represent and by the same variable, resulting
in neglect of the adjacency effect. This approximation, which is
an option in FLAASH, is satisfactory for homogeneous surface
areas, such as open ocean, and under high-visibility conditions,
but it becomes inaccurate under hazy conditions in the LZ [7].

C. Radiation Transport Calculations

The three atmospheric constants in (1), , and are
calculated from three Moderate Resolution Transmittance
(MODTRAN) [14] radiance calculations with ,
and . These calculations usually represent the single most
computationally intensive part of the atmospheric correction.
FLAASH performs a custom RT calculation for the image at
hand to permit coverage of a wide range of conditions (e.g.,
off-nadir viewing, all MODTRAN standard aerosol models).

For the most accurate short-wave correction, the MOD-
TRAN radiance calculations should be performed with the
discrete-ordinate-method radiative transfer (DISORT) [15]
multiple-scattering option rather than the computationally
much faster two-stream method [16]. For a visibility of 25 km,
the difference in calculated radiance between the two methods
translates into a reflectance difference of roughly 0.01 at 500
nm. We have recently developed a new option in MODTRAN
dubbed “DISORT scaling,” which provides near-DISORT ac-
curacy with almost the same speed as the two-stream method.
In the DISORT scaling option, DISORT and two-stream cal-
culations are performed at a small number of window region
wavelengths. The multiple-scattering contributions in each
method are identified and ratios of the DISORT and two-stream
methods are computed. This ratio is interpolated over the full
wavelength range, and finally applied as a multiple-scattering
scale factor in a spectral radiance calculation performed with
the two-stream method. In LZ applications, we have found
that this procedure yields near-DISORT accuracy at window
wavelengths, and also improves the accuracy in absorbing
regions.

D. Atmospheric Parameter Retrieval

The values of , and in (1) depend on the viewing
and solar angles and surface and sensor elevations, as well as
on the atmospheric parameters of column water vapor, aerosol
type, and visibility. Several methods have been developed for re-
trieving column water vapor using absorption bands. FLAASH
uses the combination of an in-band/out-of-band radiance ratio
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and an out-of-band radiance to interrogate a MODTRAN-gener-
ated two-dimensional lookup table (LUT) for the column water
vapor in each pixel. The water absorption band typically used
is at 1.13 m, with the LUT for this spectral region generated
on-the-fly. With multispectral data or hyperspectral data having
limited wavelength coverage, a different band may be needed
for water retrieval, or no retrieval may be possible.

In water scenes, accurate retrieval and compensation of the
aerosol or haze backscattering is critical for reliable results.
Several methods have been developed for retrieving visibility,
which defines the aerosol optical depth. If dark land pixels
(2200-nm reflectance ) are present, one may use
FLAASH’s adjacency-corrected implementation [8] of the
Kaufman et al. [17] method, which is based on an empirical
value of the 660–2200-nm reflectance ratio, for such
pixels. We have recently adapted this algorithm to retrieve a
scene-average visibility from water pixels. This was done by
changing the dark pixel definition to select water (2200-nm
reflectance ) and, recognizing the spectral flatness of
water surface reflectance in the infrared, by selecting a value
of 1.0 for the reflectance ratio for a pair of channels beyond
900 nm, such as at 1000 and 2200 nm. With LZ scenes, both
the land and water pixel methods may be used and the results
checked for consistency.

A method for retrieving both visibility and aerosol “type”
from deep water pixels in hyperspectral data has been developed
by Gao et al. [18]. The aerosol type corresponds to a specific
distribution of particle size and composition and thus has char-
acteristic wavelength dependence. In their method, a given type
is selected, a visibility is derived that generates the best fit to
a flat spectrum at a set of infrared “window” wavelengths, and
finally the “best” aerosol type and visibility are selected from
among those results. This method can potentially retrieve visi-
bility on a pixel-by-pixel basis; however, it was not designed to
account for the adjacency effect.

As part of the current study, we have developed a related
water-pixel method for FLAASH that retrieves a scene-average
aerosol type with proper treatment of the adjacency effect. The
details will be described in a future publication. In brief, the
aerosol “type” is defined by a parameter ( ) that modifies the
wavelength dependence of a chosen MODTRAN aerosol model
(rural, maritime, etc.) via

nm (2)

Here, is the unperturbed aerosol extinction coefficient, based
on the chosen model’s optical depth, which is uniformly scaled
for all wavelengths according to the visibility parameter. The
parameter changes the slope of the logarithm of the ex-
tinction curve. The scattering albedo and phase function of the
modified aerosol are taken to be those of the unmodified model
aerosol. Following Gao et al. [18], the retrieval algorithm works
with a set of infrared window bandpasses, using the presumed
wavelength dependence of the aerosol [i.e., (2)] to extrapolate
the optical depth to the visible region. The infrared bandpasses
are provisionally chosen as nm, nm,

nm, and nm. For the average deep water
radiance spectrum in these bandpasses, the algorithm finds the

combination of and visibility that most closely fits a flat
(but not necessarily zero) reflectance spectrum. It is assumed
that extrapolation of the aerosol optical depth to shorter wave-
lengths is proper, as is also assumed by Gao et al. [18]. Our val-
idation of this algorithm has been very limited to date; however,
successful results were obtained with the AVIRIS image dis-
cussed in Section V. The new aerosol parameterization with
has been added to our latest research version of MODTRAN.

All of the above aerosol retrieval algorithms rely on iden-
tifying and removing backscattered atmospheric radiance. Im-
ages taken from a very low altitude platform (within km of
the surface) may provide insufficient backscattering for accurate
aerosol retrieval. On one hand, such images are correspondingly
less sensitive to the aerosol amount, at least for dark surfaces
such as water. On the other hand, bright surfaces such as sand
remain sensitive to the aerosol amount via its effect on transmit-
tance.

E. Solution of the Radiance Equation

Once the atmosphere is adequately characterized and the con-
stants from (1) are derived, calculation of the image reflectance
is straightforward using a method described elsewhere [7], [9].
It involves computing a spatially averaged radiance image ,
from which the spatially averaged reflectance is estimated
using an approximation derived from (1)

(3)

The spatial averaging is performed using a point-spread func-
tion that describes the relative contributions to the pixel radiance
from points on the ground at different distances from the direct
line of sight. FLAASH approximates this function as a nearly
exponential function of radial distance. Since clouds can be a
severe contaminant in the spatial averaging process for the
calculation, FLAASH automatically identifies cloudy pixels and
replaces them with an average radiance.

F. Postprocessing

Even with the most accurate atmospheric correction, the re-
flectance results are susceptible to errors in the radiometric cal-
ibration of the sensor. Several investigators have reported radio-
metric offset errors in the blue region of the AVIRIS sensor [18],
[19] that introduce reflectance errors as large as several hun-
dredths. We found similar problems in the AVIRIS Tampa Bay
and QuickBird images discussed later. Mustard and Prell [19]
dealt with radiometric error in an AVIRIS image by abandoning
first-principles atmospheric correction in favor of an “empir-
ical line method” reflectance determination that used clouds
and cloud shadows over water as, respectively, white (1.00 re-
flectance) and black (0.00 reflectance) “known” surfaces. This
approach has its own problems, however. Clouds have variable
brightness and unknown water vapor absorption, and in cloud
shadows there can be reduced aerosol backscattering, which
would result in under-subtraction of atmospheric scattered radi-
ance elsewhere in the scene. Furthermore, many images contain
no clouds.

In the current work, we treated radiometric errors by applying
a simple offset to the FLAASH corrected images, derived from
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the minimum reflectance values for each spectral channel in
the image. That is, we assumed that those minimum values
correspond to zero reflectances occurring somewhere in these
large and diverse scenes. At different wavelengths the min-
imum-reflectance pixels tend to originate from different types
of surfaces, including deep water, cloud shadows over water,
underwater vegetation, and land vegetation in shadow. This
method has several potential problems, including the cloud
shadow problem mentioned above. The minimum reflectance
may remain above zero in the green region, even with both dark
vegetation and deep water in the scene. A possible remedy is
to interpolate the baseline between the red and blue regions,
where it is likely that there are near-zero reflectance pixels.
Another potential problem is the presence of “bad” pixels with
artificially low reflectance, which must be excluded. However,
based on the consistency of results that we obtained using
different parts of the images, we estimated that the offset
corrections were accurate to within several thousandths of a
reflectance unit, and thus provided a substantial improvement
to the FLAASH outputs.

III. WATER-LEAVING REFLECTANCE SIMULATIONS

A. Calculation Method

Optical remote bathymetry requires representations of the
water-leaving reflectance spectrum as a function of depth for re-
alistic bottom materials and water composition. The Hydrolight
code [3], [20] has been typically used for spectral simulations.
We have adapted a three-dimensional direct simulation Monte
Carlo (DSMC) radiation transport algorithm to perform these
calculations. Details of the code are described elsewhere [21].
Standard extinction curves for pure water, chlorophyll and
gelbstoff are used along with the Petzold [22] phase function
for mineral scattering. The original motivation for developing
and using the DSMC code was to treat three-dimensional
spatial effects, associated with underwater objects and surface
waves, as well as optical interaction between the water and the
atmosphere. The simulations conducted for the present study
did not require all these capabilities. We have verified that for
the one-dimensional water cases compiled by Mobley et al.
[20] the DSMC code gives equivalent results to Hydrolight.

B. Parameterization

Rather than performing spectral simulations with realistic
underwater materials, we ran the simulations analogously to
the MODTRAN calculations for FLAASH—that is, using
spectrally flat surfaces—in order to develop empirical param-
eters for representing the spectra of arbitrary materials. The
parameterization is based on an underwater analogue of (1)
which, for simplicity, neglects the adjacency effect

(4)

Here, , and are spectral parameters dependent on
water composition and depth but independent of the bottom
reflectance spectrum . In contrast to (1), here the solar func-
tion and atmosphere have been removed. Thus, this equation
represents water reflectance rather than radiance. The sum

represents the scattered signal from photons that never

reach the bottom; this consists of the combined surface Fresnel
reflection and foam spectral component (we represent this
as a flat spectrum) and the subsurface scattering component

. , which corresponds to the atmospheric spherical albedo
in the atmospheric correction problem, here represents the
probability that a photon leaving the bottom returns to it; it
includes water–air interface reflection, water scattering, and
absorption effects. The derivation of (4) follows that of the
atmospheric case, since analogous physical phenomena are
present. For monochromatic radiation, the equation remains
valid for arbitrary quantities of absorbing or scattering mate-
rials in the water. For a given depth and water type, the three
spectral unknowns , and are determined by solving (4)
using three different DSMC simulations of the spectrum,
corresponding to , and .

A different parameterization of water reflectance has been
proposed [23] based on “subsurface reflectance” defined
by the equation

(5)

where is taken as linear in . However, a careful analysis of
our DSMC simulations revealed a small sublinear dependence
of on . We ascribe this effect to absorption-induced non-
Lambertian behavior of the subsurface radiation field. Specifi-
cally, illumination of the bottom by internally reflected radiation
is reduced relative to direct solar illumination because the inter-
nally reflected rays, which are at less vertical angles, are more
strongly absorbed by the water. For these reasons, we believe
that the parameterization given by (4) is preferable to (5).

For an efficient bathymetry algorithm, analytical representa-
tions of , and in terms of depth are desired. Motivated
by Lee et al. [23] and others who express using parameters
that depend exponentially on , we tried exponential forms for

, and

(6)

(7)

(8)

The values depend on the wavelength and water compo-
sition. We found these equations to represent the DSMC sim-
ulations very well for monochromatic wavelengths or narrow
( nm) hyperspectral channels. However, for wide multispec-
tral bandpasses we found that the parameter, which is the
most important of the three, deviates significantly from expo-
nential behavior. Therefore, we allow a depth-dependence in
by log-interpolating between the simulation depths.

C. Simulation Database

For use with our bathymetry algorithm, an extensive data-
base, or “library,” of DSMC-simulated reflectance spectra was
assembled. The , and spectra were calculated be-
tween and -nm at -nm intervals for a series of
nine water depths (1, 3, 5, 10, 15, 20, 30, 40, and 50 m), 64
different combinations of gelbstoff, chlorophyll and turbidity
levels (designated None, Low, Medium, High), and three dif-
ferent solar zenith angles (15, 40, and 60 ), for a total of 5184
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library spectra. The Low, Medium, and High chlorophyll levels
corresponded to, respectively, 0.5, 1.0, and 2.0 times the Celtic
Sea profile in Mobley et al. [20]. The low, medium, and high
levels for gelbstoff and turbidity are based on Lee et al. [23] and
correspond to, respectively, three different levels of 440-nm ex-
tinction (0.05, 0.1, and 0.3 per meter) and three different values
(0.3, 1.0, and 5.0) of the profile factor in their paper. The Low
gelbstoff, Low turbidity, and Medium chlorophyll model is des-
ignated the “baseline ocean” case.

IV. BATHYMETRY ALGORITHM DESCRIPTION

A. Water Depth and Surface Reflection Determination

Once , and [(6)–(8)] have been determined from the
DSMC calculations and the water reflectance derived by at-
mospherically correcting the radiance image, (4) can be solved
for the bottom reflectance spectrum

(9)

The result depends parametrically on the water depth. We as-
sume that the spectrum can be expressed as the product of a
fixed spectral shape (typically taken as flat) and a magnitude

. may be inferred from infrared wavelengths beyond
nm, where light from below the surface can be neglected. Then
we may use linear spectral unmixing to represent as a com-
bination of bottom material “basis” spectra for each possible
depth, and then assign the true depth as that which gives the best
fit. With multiple spectrally distinguishable materials, the un-
mixing should be constrained to have nonnegative weights that
sum to unity or less, to account for possible shadowing. Cur-
rently we use only a single bottom material, taken from a dry
shoreline (i.e., sand) pixel, with a variable weight to account for
shadowing and brightness variations.

With some sensors, even the longest wavelength channel can
be contaminated with light from below the water surface, espe-
cially in very shallow water ( -m deep). In this case, the mag-
nitude of the water surface spectrum cannot be determined
as described above. Accordingly, we have extended the mul-
tiple-material unmixing method to allow its retrieval. This is
done by linearizing (9) with respect to so that the surface
reflectance can be treated as an effective additive bottom com-
ponent . A Taylor series expansion around yields the
result

(10)

where

(11)

Note that in (10), the quantity ,
which combines both the measured water-leaving reflectance
and the simulation model parameters, is expressed as the sum
of and the bottom reflectance. We have verified that this lin-
earized equation agrees very closely with the exact (9) for phys-
ically reasonable values (of order 0.1 or less).

A drawback of performing the unmixing on the quantity
is that it weights the measurement error very unevenly with

respect to wavelength. For the typical case where
is approximately and ( is

approximately , so the error has a weighting,
giving it a strong boost at absorbing wavelengths where is
very small. A simple way to get around this problem is to scale
the quantities and by and
perform the linear unmixing on the results.

A simultaneous bathymetry, bottom material unmixing and
surface reflection removal procedure can now be devised as
follows.

Step 1) For a selected water depth, using an appropriate
(e.g., spectrally flat) surface reflectance spectral
shape , the , and parameters of the water
model simulation, and the measured water-leaving
reflectance spectrum , form the scaled surface
spectrum and the scaled total reflectance

.
Step 2) Form synthetic spectra for one or more bottom

material reflectance spectrum components .
These will be used to form the spectral quantity

(12)

where the are to-be-determined abundances, or
weights, for each material.

Step 3) The working equation is now

(13)

with and the as unknown coefficients and
, and as known spectral components.

Determine the coefficients via a linear spectral fit-
ting procedure that minimizes the RMS error spec-
trum (this is the “unmixing” step). To avoid unphys-
ical solutions, include at least a positivity constraint
on the coefficients. An efficient method based on
modified Gram–Schmidt orthogonalization is de-
scribed by Gruninger et al. [24].

Step 4) Repeat Steps 2) and 3) over a range of water
depths, and select the unmixing solution that gives
the smallest RMS error. The depths covered in the
present work range from 0–19 m.

B. Water Constituents Estimation Using “Known” Depths

The shape of the reflectance spectrum and hence the and
parameters depend on the water constituents, especially as the

depth increases. Taking advantage of this, Lee et al. [2] report
retrieval of water constituents by direct hyperspectral data fitting
using “known” bottom material spectra. However, multispectral
data, typically with only four channels, lack sufficient informa-
tion for such retrievals, and even with hyperspectral data some
ambiguities in the retrievals are expected. For example, turbidity
can produce spectral changes similar to a decrease in depth with
a fairly spectrally flat bottom material such as sand. Gelbstoff re-
duces the blue reflectance, but might be confused with the pres-
ence of a more yellowish bottom material. Accordingly, we have
developed a procedure for estimating water constituents from
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pixels where the depth is known, or where the water is known to
be much deeper than the desired range of depths to be retrieved.

In this procedure, the previously described bathymetry algo-
rithm is used, with the surface reflection and bottom brightness
allowed to vary but the depth fixed. The best fit spectrum is re-
ported and compared with the data for each trial water model.
From such comparisons we were able to find an unambiguous
“best” model from among the 64 water types in our spectral li-
brary for the AVIRIS and LASH data discussed here as well
as for a Hyperion image of the Virgin Islands [25]. An alterna-
tive procedure is to perform bathymetry retrievals with different
water models and select the best model from comparisons with
known depths. If the pure water model is used, the retrieved
depths may be underestimated due to the presence of turbidity.
We observed this effect with an AVIRIS image of Chesapeake
Bay, where the maximum retrieved depth was only a few me-
ters. For that case, a more turbid water model should yield more
realistic depths; however, the inherent lack of depth sensitivity
of the spectrum would remain a problem.

We expect that little or no information on water constituents
will be obtainable from multispectral data, such as from
Landsat, QuickBird or IKONOS, that have only three bands in
the visible. This is because in water more than a few meters
deep, the red water-leaving radiance is completely absorbed,
leaving only two wavelength measurements (blue and green)
from which one must determine the bottom brightness and at
most one other parameter. If the bottom brightness is assumed
to be known, some constituent information should in principle
be retrievable, but then the bathymetry results are sensitive to
variations in illumination (e.g., shadows) [4].

V. DATA ANALYSIS

A. LASH Imagery of Kaneohe Bay

A set of images of Kaneohe Bay, Hawaii was acquired by
the Laser Airborne Sensor—Hyperspectral (LASH) sensor
(STI Government Systems, Honolulu) in April, 2002 under
a program sponsored by the National Imagery and Mapping
Agency [currently the National Geospatial-Intelligence Agency
(NGA)]; the data were kindly provided to us by STI. Thirteen
tracks (data strips) of imagery were taken with LASH’s two
nadir-viewing hyperspectral cameras, which are designated
Camera 0 and Camera 1. The instrument was flying about
800-m above the water, yielding a pixel size of around 1 m.
The spectra cover approximately the 390–730-nm range, with a
width and spacing of nm defined by the binning of multiple
spectral columns of the focal plane. We adjusted the supplied
wavelength calibration as needed for consistency with MOD-
TRAN spectral radiance calculations as well as other HSI data.
The LASH images are accompanied by georeferencing data
with a reported horizontal accuracy of about 30 m.

Overlapping bathymetry data were provided from a Scanning
Hydrographic Operational Airborne Lidar Survey (SHOALS)
(Optech International, Inc., Stennis Space Center, MS) data
collect in August, 2000. The SHOALS system measures water
depth down to around 50-m at a horizontal grid density of
around 4 m. These data were supplied in easting-northing

Fig. 1. Comparison of LASH spectra at similar depths with different amounts
of glint.

coordinates on an irregular grid, which was converted to longi-
tude-latitude and interpolated to the LASH pixel coordinates.

The limited IR coverage of the LASH data made it difficult
to extract parameters for the atmospheric correction, particu-
larly for the aerosol. However, the needed aerosol correction
is modest because the sensor was close to the water surface.
We assumed the MODTRAN maritime aerosol model. Using
the corrected wavelengths an atmospheric water vapor column
density of g/cm was retrieved from the 720-nm band and

-km visibility from land vegetation pixels. Finally, a small
offset spectrum derived as described in Section VI was applied.

As the Kaneohe Bay water is known to be very clear, we
began the bathymetry retrieval with the pure water model. Both
gelbstoff and turbidity tend to mask the characteristic water ab-
sorption features and make the spectra look more like those of
bottom materials; therefore, significant quantities of these impu-
rities would be expected to result in underestimated water depths
with this model. To reduce the sensitivity of the retrieval to gelb-
stoff concentration, the wavelength region used for retrieval was
restricted to greater than 525 nm.

As the sun was high (15 zenith angle) during the measure-
ments, a large amount of glint from surface waves, up to around
20% reflectance, was found in many pixels. Example spectra
from Track 1 Camera 0 are shown in Fig. 1; here the top spec-
trum has a spectrally flat glint offset of around 10% reflectance.
Except in the deepest water, where the signal from below the
surface is very small, the glint was subtracted well enough to
retrieve an accurate subsurface spectrum. This is shown in the
Fig. 2 images of a small part of the data strip where the water
is 4–8-m deep. Even though the original reflectance image is
overwhelmed by glint, the glint-removed image is free from
wave clutter and reveals the underwater environment. The ocean
bottom image is similar to the glint-removed image; in a color
rendition it appears light brown, appropriate for a coral sand
bottom.

The bathymetry results for Track 1 Camera 0 are compared
against the SHOALS ground truth depths in the Fig. 3 scatter
plot and Fig. 4 histogram plot. The comparisons were performed
with a -m shift between the LASH and SHOALS images
to correct for a geographic misregistration, which was evident
from the depth maps. The mean systematic error in the depth
retrievals is around %, and the half-width of the distribution
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Fig. 2. LASH images of 4–8-m deep water in Track 1 Camera 0. At left,
original reflectance image after atmospheric correction. At center, image after
glint removal. At right, retrieved image of ocean bottom.

Fig. 3. Scatter plot comparison of retrieved and SHOALS truth bathymetry
for LASH Track 1 Camera 0. Retrieval assumed the pure water model. White
diagonal line corresponds to perfect agreement.

around the mean is 1.0–1.5 m. The direction of the systematic
error is consistent with expectations for the pure water model,
as discussed above. The striping of the scatter plot originates
from the discrete gridding of the retrieved values. To reduce the
overlap of data points and thereby improve the appearance of
the plot, a small amount of random noise has been added to the
retrieved values.

Results for a portion of Track 3 Camera 0 are shown in
Fig. 5. Coral structures are prominent in the bottom image and
the depth map, and allow the data to be georegistered with
the SHOALS bathymetry to within a few meters. The level of

Fig. 4. One-meter histogram comparison of the Fig. 3 data.

Fig. 5. Results from a shallow water portion of LASH Track 3 Camera 0
showing coral features. From left, original image, surface glint, glint removed,
bottom, and depth.

Fig. 6. Grayscale depth map comparison for LASH Track 3 Camera 0.

agreement between the true and retrieved depth is similar to
that in Track 1 Camera 0.
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(a) (b)

Fig. 7. Detail of a �0:5 � 1:25 km analyzed region of the QuickBird image of Kaneohe Bay. The lower image at right has surface reflection and thin clouds
removed. Small square at lower right indicates deep water beyond the edge of the reef.

The images in Fig. 2 show some dark patches where the glint
and bottom brightness are correlated. We interpret these patches
as thin cloud shadows. Later in this section we present Quick-
Bird imagery that contains numerous cloud shadows, including
nearly opaque shadows from thick cumulus clouds. Because our
bathymetry algorithm accounts for variable bottom brightness,
it is rather insensitive to illumination variations arising from thin
clouds as well as from wave-related lensing effects. However,
if the shadows are very dark, the water-leaving radiance signal
becomes too small to be separated from atmospheric backscat-
tering, and the retrieval fails.

Fig. 6 shows a grayscale comparison of truth and LASH-re-
trieved bathymetry for a deeper portion of Track 3 Camera 0.
The depths range from around 2 m (white) to around 8 m (black).
This image shows the high spatial resolution of the depth re-
trieval, which is equal to or better than that of the SHOALS
ground truth data. The retrieval accuracy is similar to that shown
in Figs. 3 and 4.

Improvements upon the current LASH bathymetry results
might be obtained by using a more accurate water description,
perhaps one intermediate between the pure water and Low
gelbstoff models in our library. In combination with this, the
retrieval wavelength range could be extended to nm or
lower, as was done in our subsequent analysis of QuickBird
data of Kaneohe Bay, described next.

B. QuickBird Imagery of Kaneohe Bay

Imagery of Kaneohe Bay was acquired by the QuickBird
satellite sensor on February 20, 2002, two months before
the LASH data collect. The pixel size is around 2.6 m. We
obtained a 42-km subset of the archived data (DigitalGlobe
Cat. ID 1010010000206701, http://www.digitalglobe.com),
and analyzed several portions of it. The portion shown in Fig. 7
overlaps the SHOALS bathymetry and is largely free of thick
clouds, although much of it is in cloud shadow.

A FLAASH atmospheric correction with a default visibility
(40 km) generated realistic spectra; shadows on both land and
water have close to zero reflectance, and bright clouds have a
spectrally flat reflectance of around 0.6. This gives us confidence
that the radiometric calibration of QuickBird and the aerosol
loading estimate are reasonably accurate. The reflectances were
refined by applying a small offset using the method described

Fig. 8. Grayscale depth maps for the Fig. 7 QuickBird image. Top image
shows the retrieved depths, with cloud- and shadow-masked areas in white;
bottom image shows the SHOALS ground truth.

Fig. 9. Comparison of QuickBird retrieved (solid curve) and SHOALS truth
(dashed curve) depths along the horizontal line in Fig. 8. Retrieved values are
set to zero in cloud- and shadow-masked pixels.

in Section II-F. As in the LASH data analysis, the pure water
model was assumed for the bathymetry retrieval.

The bathymetry algorithm masks out land, thick clouds, and
deep shadow and attempts retrievals for the remaining pixels.
Thin clouds are treated like surface reflections and are removed,
as seen in the Fig. 7 detail region. Depth results for that re-
gion are displayed in Figs. 8 and 9. The overall agreement be-
tween the retrieved and true depths is seen to be quite reason-
able, particularly in the fully illuminated areas outside the cloud
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Fig. 10. Depth retrieval error statistics as a function of depth for a strip of the
Fig. 7(left) QuickBird image.

shadows, and including the patch of relatively deep ( m)
water at the lower right. The typical error is around 1 m; most
of it appears to be a random pixel-to-pixel variation, which we
ascribe to radiance measurement noise.

More quantitative estimates of the depth retrieval accuracy
were made for a 0.5-km-tall horizontal strip of Fig. 7(a) that
starts from the shoreline and continues out to, and includes, the
detail region; this strip contains approximately 160 000 usable
water pixels. The results, in Fig. 10, are expressed in terms of
the mean (systematic) error and the standard deviation about the
mean (this measures the spread in retrieval errors) as a function
of retrieved depth. For unknown reasons, the systematic error
reaches a maximum of just over 2 m at around 6-m depth. How-
ever, over most of the 0–19-m range, it remains well below 2 m.

C. AVIRIS Image of Tampa Bay

Measurements of the Tampa Bay area were made by the
AVIRIS hyperspectral sensor on May 21, 1999 from an altitude
of 20 km. The pixel size is around 20 m. From the original data
strip (f990521t01p02, available from the Jet Propulsion Labora-
tory, http://aviris.jpl.nasa.gov/), we prepared a 600 900 pixel
image (Fig. 11) that is largely covered by NOS bathymetry from
the 1940s and 1950s. The image was atmospherically corrected
using FLAASH with several different aerosol retrieval methods.
The different methods gave somewhat different results for the
visibility. The method in Section II-D yielded and
a 45-km visibility using the MODTRAN rural aerosol model as
the reference. The resulting modified wavelength dependence
is very similar to that of the marine model, which we used for
further analysis of the data. Following FLAASH processing, we
derived and subtracted an estimated reflectance offset spectrum
as described in Section II-F. The offset was 0.01 or less above
500 nm, where both the aerosol retrieval and bathymetry are
performed, but at 430 nm it was very large (around 0.07).

The bathymetry algorithm was run on the reflectance image
using the base ocean water model. The results are compared
with the NOS data in Figs. 12 and 13. Due to the age of the NOS
bathymetry, it is difficult to draw quantitative conclusions about
the retrieval accuracy. However, in qualitative terms the agree-
ment appears reasonable over most of the scene. The histograms

Fig. 11. AVIRIS radiance image of the south Tampa Bay area, May 21, 1999.
Dimensions are �12 � 18 km.

(a) (b)

Fig. 12. Grayscale maps of (a) retrieved and (b) NOS bathymetry for the
AVIRIS Tampa Bay scene.

in Fig. 13 indicate that for depths down to m, the average
difference is a little less than 1 m, and that there is agreement to
within 2 m for nearly all pixels.

VI. SUMMARY AND CONCLUSION

This work has demonstrated the application of hyperspectral
and multispectral remote imagery to remote bathymetry in the
littoral zone using physics-based atmospheric correction and
retrieval algorithms. The results include depth maps and bottom
visualizations. As part of this effort, atmospheric correction in
the littoral zone was advanced through new capabilities added
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Fig. 13. Histogram comparison of the retrieved and NOS depths for Tampa
Bay.

to the FLAASH atmospheric correction and MODTRAN radi-
ation transport codes; these include improved characterization
of the aerosol wavelength dependence and a DISORT scaling
technique for rapidly calculating multiply scattered radiance in
atmospheric window wavelength regions. The depth retrieval
algorithm, which uses spectral reflectance data, accounts for
water surface reflection and thin clouds, while simultaneously
retrieving bottom brightness and depth. With a nearly over-
head sun, glint contributions can be quite large (of order 0.1
reflectance), but they can usually be removed satisfactorily.

Analyses of AVIRIS, LASH, and QuickBird data have been
undertaken, including imagery of Kaneohe Bay, HI, overlap-
ping with laser bathymetry data. The depth retrieval accuracy,
typically within a couple of meters from 0–10-m depths, is sim-
ilar to what has been reported by other investigators [1], [2],
[4] using different algorithms over littoral areas of comparable
size and water clarity. The results are quite sensitive to the ac-
curacy of the sensor radiometric calibration, the knowledge of
the bottom material spectrum, and the ability to estimate the
water optical properties. The maximum retrievable depth is lim-
ited by the turbidity of the water. In addition, we found that ac-
curate bathymetry beyond several meters depth requires very
high accuracy in the radiometric baseline, to within a few thou-
sandths of a reflectance unit. For the data we studied, this gen-
erally necessitated applying an empirical baseline offset to the
reflectance after a first principles atmospheric correction was
performed. The depth retrievals were rather insensitive to par-
tial shadow, such as from thin clouds; however, retrievals were
not possible in thick cloud shadows due to a lack of signal.

With hyperspectral imagery under favorable conditions, such
as when there is independent depth information or the bottom
spectrum is well known, some water composition information
can be inferred; in particular, the blue region of the spectrum is
sensitive to the level of gelbstoff. However, with typical multi-
spectral imagery we find that, in the presence of water surface
reflections, only depth and bottom brightness are retrievable,
since there are typically only three or four spectral channels con-
taining independent information.

While the current algorithms work reasonably well with a
variety of remote imagery, the work of Lee et al. [2] suggests
that, at least with hyperspectral data, further improvements may

allow additional information on the water and bottom compo-
sition to be retrieved. In addition, we recommend further work
to optimize the selection of spectral channels for the analysis
and to more accurately convert the water-leaving spectra to
reflectance.
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