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1.  INTRODUCTION 
 
  Hyperspectral imaging (HSI) from airborne or space-based platforms, currently conducted mainly in the 0.4 
- 2.5 µm wavelength region, is a valuable technique for detection and classification of materials and objects on the 
Earth's surface.  In a typical analysis, the spectral radiance data are "corrected" or compensated for the atmospheric 
and illumination conditions to yield spectral reflectance, and the results are processed with any of a variety of 
algorithms, which may, for example, compare the contents of each pixel with reference spectra for classification, 
search the scene for a desired material spectrum, or calculate a terrain property such as a vegetation cover index.  
Atmospheric correction algorithms include several based on first-principles radiation transport models (e.g., Gao et 
al., 1996; Green et al., 1996; Richter, 1996; Matthew et al., 2000) as well as the Empirical Line Method (ELM), 
which utilizes known materials in the scene.  An alternative approach is to work with the original radiance data; this 
is effective for identifying scene anomalies and for supervised processing, where the scene elements can be 
identified visually by an analyst.  
 
  Regardless of the analysis method, varying illumination of the ground caused by shadowing or uneven 
terrain poses problems for detection and classification.  The radiance spectra can vary in both shape and amplitude, 
since the ground-reflected light is altered while the atmospherically scattered components, consisting of 
backscattering and forward-scattered surface-reflected light ("adjacency" scattering), remain unchanged.  To account 
for the spectral variation, Healey and Slater (1999) developed a simulation-based detection method that involves a 9-
dimensional projection spanning combinations of material spectra, atmosphere models, and direct-sun and sky 
radiance levels.  Alternatively, one can work with the spectra output by an atmospheric correction algorithm, which 
have the atmospheric scattering removed and thus have a much more constant shape.  With such processed spectra, a 
brightness-normalized algorithm such as the Spectral Angle Mapper (SAM) (Kruse et al., 1993) can largely 
compensate for reduced sunlight.  However, even the SAM loses effectiveness in shadows, where typically the 
dominant illumination is from skylight, which is skewed to short (blue-violet) wavelengths.  The spectral skewing 
effect is illustrated in the reflectance data shown in Figure 1.   
 
  In this paper we present and compare some simple, new algorithms for classification and whole-pixel 
material detection using atmospherically corrected data.  These include the SAM, an extension of the SAM that 
accounts for the different spectral shapes of sunlight and skylight, and algorithms that use a Euclidean distance 
rather than a spectral angle difference metric.  The most effective algorithm in this study computes the distance 
between the pixel spectrum and a best-fit combination of direct-sun-illuminated and sky-illuminated apparent 
reflectance spectra of the desired material or endmember.  Another, simpler algorithm computes an analogous 
distance using the SAM's assumption of an invariant spectral shape.  As an initial demonstration the algorithms are 
applied to an atmospherically corrected HYDICE (Basedow et al., 1995) image from the Forest Radiance I set 
studied by Healey and Slater and to a HYDICE image of the DOE ARM (Atmospheric Radiation Measurement) Site 
in Lamont, Oklahoma. 
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Figure 1.  Apparent reflectance spectra of gravel road pixels across the edge of a tree line cast shadow (curve labels 
are pixel x,y coordinates).  Data are from Run 7 of the HYDICE Forest Radiance I experiment.  Atmospheric 
correction includes adjacency effect compensation.  Note the relative emphasis of the short wavelengths as the 
shadowing increases. 
 
2. DESCRIPTION OF APPROACH 
 
  The basic procedure involves atmospherically correcting the data to generate apparent surface spectral 
reflectance, calculating a skylit-to-fully-illuminated spectral ratio, applying the ratio to a fully illuminated 
reflectance spectrum of a chosen material to simulate its spectrum in shadow, and finally incorporating both the 
original and the shadowed spectrum in a detection or classification algorithm.  The details are described below. 
 
2.1 Atmospheric Correction Method 
 
  The standard equation for spectral radiance L* measured above the surface may be written as (Matthew et 
al., 2000) 
 
       L* = (Aρ + Bρe)/(1 - ρeS) + L*a (1) 
        
for ultraviolet through near-infrared wavelengths, where thermal emission is negligible.  Here ρ is the pixel surface 
reflectance, ρe is a spatially convolved surface reflectance for a region surrounding the pixel, S is the spherical 
albedo of the atmosphere, L*a is the radiance backscattered by the atmosphere, and A and B are coefficients that 
depend on atmospheric and geometric conditions.  All of these quantities are spectrally dependent.  The A term in 
Equation (1) represents radiance from the surface that travels directly into the sensor, while the B term represents 
radiance from the surface that is scattered by the atmosphere into the sensor.  The distinction between ρ and ρe 
accounts for the adjacency effect. 
 
  Using calculations from a radiation transport model (for example, MODTRAN (Berk et al., 1989)), the 
values of A, B, S and L*a can be determined and combined with a suitable point-spread function (kernel) for the ρe 
spatial convolution to iteratively solve Equation (1) for ρ.  A simple method for extracting A, B, S and L*a from 
MODTRAN calculations with surface reflectances of 0, 0.5, and 1 has been described by Adler-Golden et al. 
(1999).  To account for variations in the atmospheric water vapor column over the scene, a separate set of 
parameters is tabulated for each of a series of water amounts spanning the scene.  The water amount for each pixel is 
retrieved using shape information from one or more water absorption bands, and the result is used to interpolate 
among the tabulated parameters. 
 



 

 

2.2 Effect of Reduced Direct Solar Illumination 
 
  Equation (1) assumes full sun and sky illumination.  We now consider the case where the direct sun is 
partially or fully blocked but the sky illumination remains.  Denoting α as the fractional direct sun, Equation (1) 
becomes 
 
      L* = (Aρ + Bρe)/(1 - ρeS) + L*a - (1 - α)Dρ (2) 
     
Here Dρ is the radiation that would travel along the L-shaped path from the sun to the surface to the sensor without 
scattering (the "direct reflected" radiance in MODTRAN).   
  
  Equations (1) and (2) together allow one to calculate the apparent reflectance spectrum ρp of a partially 
sunlit surface that is returned by a standard atmospheric correction algorithm that assumes full illumination.  To do 
this, we replace ρ with ρp in Equation (1) and equate the spectral radiance to that of Equation (2).  This leads to the 
following relationship between the two reflectance spectra:  
 
       ρp = ρ[1 - (1 - α)D(1 - Sρe)/A] (3) 
        
According to Equation (3), the observed spectrum ρp can be written as a linear combination of a shadow spectrum 
(α = 0), given by ρ[1 - D(1 - Sρe)/A], and either the ordinary full-illumination spectrum ρ or the spectrum ρD(1 - 
Sρe)/A that is attributable to direct sun illumination only (no skylight).  The quantity R = 1 - D(1 - Sρe)/A is the 
spectral ratio between the shadowed spectrum and the fully illuminated spectrum, and depends only on quantities 
that are calculated during the atmospheric correction process. 
 
  In strict terms, R is not constant over the scene because of variation in the spatially convolved reflectance 
ρe.  However, in most situations this variation can be neglected.  At the shortest visible wavelengths, where S is 
largest, the atmospheric scattering is dominated by Rayleigh scattering, for which the range of the convolution 
kernel is typically of order 1 km.  With a kernel of this size, ρe tends to vary little over the scene as long as the 
different surfaces types are reasonably well distributed spatially.  At longer wavelengths the kernel range is shorter, 
but here S << 1 for typical aerosol loadings, so that any ρe variation will have only a small effect.  Therefore, to a 
good approximation, we may replace ρe with the scene-average reflectance ρa.  This results in a simple expression 
for the shadow (full sky-illuminated) to full illumination spectral ratio,  
 
       R = 1 - D(1 - Sρa)/A  (4) 
        
that is independent of both location in the scene and the spectral properties of the surface.  R is of course dependent 
on the atmospheric properties, particularly the aerosol amount and type, as well as the solar and viewing geometries.   
 
  A typical calculation of R using MODTRAN appears in Figure 2.  Since the Equation (4) result is close to 
the simpler expression 1-D/A that neglects Sρa, the replacement of ρe with the scene-average ρa should be a 
negligible source of error.  The absorption band structure in R, which is mainly from water vapor, arises because the 
skylight takes a somewhat longer average path through the atmosphere than the direct sun.  With typical 
atmospheric correction codes, this structure tends not to appear in shadows because the code adjusts the retrieved 
water amount to compensate.  To account for this adjustment, R may be computed using slightly different water 
amounts in D and A so as to minimize the band structure. 
 
2.3 Shadow-Invariant Detection and Classification 
 
  A variety of hyperspectral algorithms exist for the detection of desired materials at the sub-pixel or whole-
pixel levels. Unconstrained subspace projection (Chang et al., 1998), constrained unmixing (Keshava et al., 2000), 
and the matched filter (MF) and Constrained Energy Minimization (CEM) (Farrand and Harsanyi, 1997) algorithms 
are suitable for sub-pixel detection.  Classification algorithms, which assign each pixel to an "endmember" 
spectrum, work well for whole-pixel detection if the desired material is taken as an endmember.  The simplest of 
these algorithms, which require definitions of endmember spectra but not their statistics, use either Euclidean 
distance or spectral angle as a spectrum difference metric.  The spectrum is assigned to the endmember that gives 
the minimum distance or angle, or equivalently the maximum angle cosine. 
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Figure 2.  MODTRAN-calculated shadow to full illumination reflectance ratio for the HYDICE Forest Radiance 
Run 7 scene (56o solar zenith angle, 25 km urban haze, 2200 atm-cm water vapor).  Solid line is 1-D/A; dashed line 
is from Equation (4). 
 
  One can envision generalizing the above methods to accommodate the sky-versus-sun spectral difference 
by representing the desired or endmember material spectrum as some linear combination of the skylit spectrum and 
the direct sun-illuminated spectrum (the fully illuminated spectrum minus the skylit spectrum).  Examples of 
generalized classification algorithms are given below.  If the sky is considered as a spectrally uniform source, then 
all combinations of sky and sun illumination can be represented by some positive linear combination of those two 
spectra, even when there is less than full sky illumination.  As a special case, if one imposes a full-sky illumination 
constraint the linear combination is defined simply by the direct-sun fraction α. 
 
2.3.1 Algorithms Based on Spectral Angle 
 
  The SAM computes the spectral angle between the unknown pixel spectrum and the endmember (or 
desired) spectrum, a quantity that is amplitude independent.  The angle cosine is given by 
 
       p = ri

Td / |ri||d| (5) 
 
where ri

T is the pixel spectrum, d is the endmember (or desired) spectrum; bold font is used to denote vector 
quantities and operations.  
 
  We may write a generalization of the SAM that explicitly accounts for the spectral variation caused by 
reduced direct sun: 
 
       pL = ri

Tdp / |ri||dp| (6) 
 
Here dp is the least-squares best-fit linear combination of direct sun-illuminated and sky-illuminated endmember 
reflectance spectra for each pixel and pL is the cosine of the spectral angle between the pixel spectrum and dp.  If we 
assume full sky illumination, dp is written as 
 
       dp = αd1 + d2 (7) 
 
where d2 is the spectrum of the endmember in shadow (i.e., d scaled by R) and d1 is the direct-sun spectrum d - d2.  
The best-fit direct sun fraction α for the pixel is given by 
 



 

 

       α = (ri - d2)Td1 / (d1
Td1) (8) 

 
To keep α physically meaningful it should be restricted to values between 0 and 1.  This enhanced version of the 
SAM is referred to in this paper as SAM-IM, for Spectral Angle Mapper with Illumination Matching. 
 
2.3.2 Algorithms Based on Distance 
 
  The simplest distance metric for detection or classification is the Euclidean distance between the desired or 
endmember spectrum and the unknown pixel spectrum, 
 
       D = |ri - d| (9) 
 
A corresponding distance may be defined in which the endmember illumination is best fit to the pixel spectrum: 
 
       DL = |ri - dp| (10) 
 
We have found that the full-sky constraint used to define dp in Equation (7) is very limiting with the distance metric, 
since it does not allow brightness matching when the shadows are only partially illuminated by the sky.  To 
overcome this problem dp is redefined by including β as an effective sky illumination fraction: 
 
       dp = αd1 + βd2 (11) 
 
α and β are determined from a least-squares fit to the pixel spectrum.  The unconstrained solutions, obtained by 2-
dimensional projection, are 
 
       α = (ri

Tu1 - wri
Tu2) / |d1|(1 - w2) (12a) 

 
       β = (ri

Tu2 - wri
Tu1) / |d2|(1 - w2) (13b) 

 
where u1 and u2 are the unit vectors d1/|d1| and d2/|d2|, respectively, and w = u1

Tu2.  If either α or β lie outside the 
physically plausible 0 to 1 interval, the results are replaced with a constrained solution, which is omitted here for 
brevity.  The classification algorithm based on Equations (10)-(13b) is referred to in this paper as MD-IM, for 
Minimum Distance with Illumination Matching.   
 
  An alternative, simpler distance metric can be generated by assuming that the spectral shape is 
illumination-independent, as in the SAM.  This leads to a definition of dp as the projection of the pixel spectrum 
onto the fully illuminated endmember material, 
 
       dp = u ri

Tu  (14) 
 
where u is the endmember unit vector d/|d|.  The projection magnitude ri

Tu can be limited to a maximum of |d|, the 
length of the endmember, to insure that the illumination does not exceed that of the full sun and sky.  This constraint 
effectively prevents the pixel from being classified with a dimmer endmember, as can happen with the SAM and 
SAM-IM.  We refer to the classification algorithm based on Equations (10) and (14) as PD, for Projection Distance.  
While not as accurate as the MD-IM algorithm, a practical advantage is that no information on the shadow-to-full-
illumination reflectance ratio is required, making it suitable with atmospheric correction methods such as the ELM 
that do not use radiation transport calculations. 
 
3. ILLUSTRATIONS 
 
3.1 Shadowed Material Detection 
 
  To test the effectiveness of the SAM in cast shadows and assess the importance of the different spectral 
shapes of sunlight and skylight, the SAM and SAM-IM algorithms were exercised on an early morning image, Run 
7, from the 1995 HYDICE Forest Radiance I data.  Figure 3 shows a portion of the image where an L-shaped loop 



 

 

of gravel road (dotted line) runs along a tree line.   The short side of the L is in the open but is shadowed by the tree 
line to the left.  The long side of the L is both shaded and partly obscured by overhanging trees.  On the opposite 
side of the road is a line of test objects.  The purpose of the demonstration was to find all non-obscured gravel road 
pixels, including the parts of the road in shadow, using spectral information only (i.e., no spatial filtering).  This 
detection problem is a fairly challenging one, because the actual road spectrum varies over the scene and also 
because it lacks obvious unique spectral features. 
 
  The hyperspectral image was atmospherically corrected using the code developed by Matthew et al. (2000), 
which is based on MODTRAN4 (Berk et al., 1998) and includes an adjacency effect compensation and aerosol 
retrieval capability.  The code was modified to output the D coefficient in Equation (2).  A visible range of around 
25 km was retrieved with the urban aerosol model.  For simplicity we assumed that the sunlit road could be 
represented by the spectrum from a single pixel.  The SAM and SAM-IM angle cosine outputs were calculated and 
used as the road detection metric;  a pixel was identified as road if a threshold was exceeded. 
 

 
 

Figure 3.  Forest Radiance I Run 7 scene.  The right hand image shows the location of a gravel road at the tree line. 
 
  The results are summarized in Figure 4, which depicts the output amplitudes as gray scale images in the 
left-hand column (white = maximum) and the results after thresholding in the right-hand column.  In the top two 
images, the sunlit road spectrum is input, and the SAM yields a strong response to the sunlit road pixels but a very 
poor response to the shadowed road pixels.  In the middle four images, a shadowed road spectrum is input.  Here the 
SAM responds well to the shadowed road and almost as well to shadows cast on the field by the tree line and the test 
objects, but the response to the sunlit road is poor.  Nearly identical results are obtained using an actual shadowed 
road spectrum (second row) and a spectrum simulated from the sunlit spectrum and the spectral ratio R (third row).   
  
  As shown in the bottom two images in Figure 4, the SAM-IM essentially combines the detection 
capabilities of the sunlit and the shadowed SAM runs.  Compared to the ordinary SAM there is some sacrifice in the 
ability to reject false positives, which, as seen from Figure 3, are mainly from shadows and dead grass.  However, 
this is more than compensated by the new capability to detect the road in shadow. 
 
3.2 Shadow-Invariant Classification 
 
  As a second demonstration, we compare the angle metrics of the SAM and SAM-IM with the distance 
metrics of the PD and MD-IM algorithms for surface classification.  The  algorithms were applied to an image of the 
Lamont, Oklahoma DOE ARM site taken by HYDICE in June 1997 (Figure 5) with a very low sun angle (around 
15o elevation), resulting in long shadows cast by trees and buildings.  The image was atmospherically corrected, and 
seven representative spectra were manually selected as endmembers.  The spectra are grass, dirt (from the furrowed 
field at the lower left), building roof (from one of the brighter building pixels), pond, black panel (the nominal 3% 
reflective panel at the upper right corner of the array), road, and driveway (a pixel in the open area between the 
buildings).  These spectra all have distinct shapes, except for the road and driveway, which differ somewhat in 
brightness but otherwise are very similar.  The distinction between the road and driveway classes turns out not to be 
meaningful, so these classes have been lumped together in the presentation of results. 
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Figure 4.  Road detection results.  Left-hand images are the angle cosine outputs; right-hand images are the results 
after thresholding. 

    The classification results are shown in Figures 6a-d.  Enlargements of Figures 5 and 6a-d that focus on 
the main cluster of buildings appear in Figures 7 and 8a-d.  The color scheme in the classification maps is green = 
grass, ochre = dirt, pink = roof, dark blue = pond, black = panel, gray-blue = road/driveway. 



 

 

 
 

Figure 5.  HYDICE ARM Site scene, Run 22. 
 

   (a)  MD-IM    (b)  PD  

  
       (c)  SAM-IM    (d)  SAM 

  
 

Figure 6a-d.  ARM site classification maps. 
 
  The main differences among the classifications revolve around the black panel, road/driveway and building 
classes.  The algorithms that do not include the blue-skewing effect of the sky (PD and SAM) classify the shadows 
on the road/driveway with the black panel, while those that include the skewing correctly assign nearly all of them 
to the road/driveway class.  On the other hand, shadows on the grass are correctly classified as grass by all of the 
algorithms, including the SAM.  The building pixels are classified well by all algorithms except the SAM-IM, which 
mis-classifies the building roofs that face away from the sun. 
 
  The two spectral angle-based algorithms assign a large number of the calibration panels to the black panel 
class, even those that are much brighter than the black panel.  In contrast, the distance-based algorithms assign only 
portions of the two darkest panels to the black panel class. These results are consistent with the discussion in Section 
2.3.2.  The MD-IM black panel class is actually a bit too restricted; many of the black panel pixels are assigned to 
the soil class, apparently because the difference in brightness and color can together be compensated by reduced 
illumination.  
 
  The MD-IM algorithm was also run with different constraints on the sky fractional illumination β.  With a 
lower limit of 0.5 most shadows were properly classified.  However, raising the limit to 1.0 gave very poor results; 
even shadowed grass was mis-classified.  The problem may be that the skylight is very anisotropic, increasing 
strongly near the sun especially when it is low; thus, even a small obscuration of the sky around the sun can reduce 
the illumination to well below the full sky total.  The SAM-IM algorithm performs better than the MD-IM with β = 
1 because the spectral angle is insensitive to the illumination intensity.  



 

 

 
Figure 7.  Enlargement of Figure 5. 

 

                   (a) MD-IM  (b) PD 

  
                   (c) SAM-IM  (d) SAM 

  
Figures 8a-d.  Enlargements of Figures 2a-d. 

 

4. CONCLUSIONS 
 

Starting from radiation transport equations and spectral angle or Euclidean distance metrics, some simple 
algorithms for illumination-invariant detection or classification of surface materials in atmospherically corrected 
hyperspectral images have been formulated.  In initial demonstrations on HYDICE data the new algorithms 
performed significantly better in shadow than the Spectral Angle Mapper (SAM).  The most successful algorithm, 
MD-IM, uses a constrained 2-dimensional projection of the pixel spectrum onto apparent endmember reflectance 
spectra that correspond to illumination by direct sun and by the sky.  The sky-illuminated spectrum is simulated 
from the ordinary reflectance spectrum using a spectral ratio calculated from the MODTRAN radiation transport 
model.  Another algorithm, PD, does not use this ratio but still outperformed the SAM in our tests.  Both the PD and 
MD-IM algorithms generate a spectral distance metric that incorporates a maximum illumination constraint.  The 
SAM has no such constraint, and thus can assign a pixel to the class of a dimmer endmember, which is not 
physically justifiable for horizontal Lambertian surfaces.  For situations where such an assignment may be sensible 
(for example, when the target brightness is inherently variable due to specular behavior and varying orientation), the 
allowable maximum illumination could be increased.  The sky illumination in the MD-IM algorithm can be 
constrained with a lower bound; however, the current study did not find this to be helpful. 



 

 

Further work is needed to evaluate of the performance of the new algorithms and metrics on a broader 
range of data and to compare the results with the radiance simulation approach of Healey and Slater (1999).  We 
anticipate that the best performance may be attainable with algorithms, such as the MD-IM, that use a low-
dimensional projection, incorporate physical constraints, and take advantage of state-of-the-art radiation transport 
codes and processing algorithms that remove sensor-related artifacts (Boardman, 1998). In addition to detection and 
classification, the PD and MD-IM distance metrics may prove valuable in clustering or other methods for 
endmember selection.  Finally, we note that with either an atmospheric correction or simulation-based approach, 
inclusion of the adjacency effect is essential for the accurate treatment of dark surfaces and shadows (see Figure 5 of 
Adler-Golden et al. (1999)).   
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