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ABSTRACT 
 
A new end-member analysis method based on convex cones has been developed. The method finds extreme points in a 
convex set.  Unlike convex methods that rely on a simplex, the number of end-members is not restricted by the number 
of spectral channels. The algorithm simultaneously finds fractional abundance maps. The fractional abundances are the 
fractions of the total spectrally integrated radiance of a pixel that are contributed by the end-members. A physical model 
of the hyper-spectral or multi-spectral scene is obtained by combining subsets of the end-members into bundles of 
spectra for each scene material. The bundle spectra represent the spectral variability of the material in the scene induced 
by illumination, shadowing, weathering and other environmental effects. The method offers advantages in multi-spectral 
data sets where the limited number of channels impairs material un-mixing by standard techniques. The method can also 
be applied to compress hyper-spectral data. The fractional abundance matrices are sparse and offer an additional 
compression capability over standard matrix factorization techniques. A description of the method and applications to 
real and synthetic hyper-spectral and multi-spectral data sets will be presented.  
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1.  INTRODUCTION 
 
A goal of analysis of hyper-spectral and multi-spectral imagery is the identification of the materials and objects in the 
field of view based on the spectroscopic and spatial information contained in the data. Typical scenes may contain many 
materials and each material will have spectral variability. Even when data has been atmospherically corrected, 
environmental and illumination effects still persist in the data and more than one spectrum is typically required to 
describe a material. The number of materials and their spectral variations may exceed the rank of the data sets, the 
number of linearly independent channels.  
 
The standard linear mixing model is based on a set of material spectra or end-member spectra chosen to model the scene. 
Each pixel is modeled using the set as a basis.  The basis must be linearly independent and its dimension is dictated by 
the rank of the end-member spectra rather than the number of materials and spectral variations that are present in the 
data.  This limitation leads to poor estimates of material abundances when a basis is inadequate to represent the material 
and its spectral variations. 
 
While a scene may contain many materials, individual pixels and their immediate surrounds typically contain only a few. 
This suggests that a collection of local models, each describing a small number of materials and their environmental 
variations, would provide the desired description of a scene.  Strategies have recently been developed for determining 
abundances when a set or bundle of spectra is used to describe each material.  These include a linear programming 
technique1 and a regularized constrained least squares approach2. Alternatively, stepwise constrained least squares 
approaches can be used to select subsets of end-member spectra to model each pixel spectra3,4. These linear 
programming and least squares procedures require an adequate set of end-member spectra that describes the scene 
materials and their spectral variability.   
 
We have developed convex factorization techniques that can automatically generate the sets of end-member spectra for 
hyper-spectral and multi-spectral imagery.  The end-member abundances are determined simultaneously with end-
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member extraction via two optimization algorithms, a minimum residual (MinR) and a maximum sparseness (MaxS) 
algorithm. The MinR optimization has been implemented in SMACC2,5, the Sequential Maximum Angle Convex Cone 
code. The MaxS algorithm tries to represent each pixel with the minimum number of end-members. Both determine and 
update abundances simultaneously with finding end-members, avoiding the need for subsequent time consuming and ill-
conditioned constrained least squares procedures. A key advantage of  the convex factorization techniques is that the 
number of end-members selected is not limited by the rank of the data or the number of spectral channels.   This 
capability leads to an accurate representation of hyper-spectral data and to an important spatial feature extraction role in 
multi-spectral imagery data.  The end-members selected by convex factorization are the extreme vectors of the convex 
cone of the data. These are the most unique vectors within the data. The convex factorization leads to sparse abundance 
matrices with pixels of similar scene materials being described by the same subsets of the end-members. Each subset 
forms its own convex span, leading to a description of  hyper-spectral or multi-spectral data in terms of a set of convex 
cones one for each material and mix of materials.  The overall geometric description of the data is that of a convex 
polyhedron or polytope.  
 
A second advantage to convex factorization results from the sparseness of the resulting abundance matrics. Convex 
factorization can lead to higher compression of data over standard factorization techniques, in spite of  the larger number 
number of basis functions required for equivalent residual errors of approximation.    
A description of the matrix factorization techniques is given in section 2.  Section 3 contains  a comparison of the 
method with standard autonomous end-member algorithms using a AVIRIS Cuprite Nevada scene. Also in section 3 is 
an illustration of the compression capabilities of the technique. The method was applied to the moderately complex 
AVIRIS scene of the Harrisburg Pennsylvania airport. Finally the capabilities for end-member and abundance map 
extraction in multi-spectral scenes are illustrated using six visible and near IR LANDSAT channels of a synthetic 
LANDSAT scene of the Harrisburg airport as an example.  
    

2.  METHOD 
 
Matrix factorization techniques can be applied to hyper-spectral data to select unique pixel spectra or to select unique 
bands. Hyper-spectral data can be given a (row, column) matrix representation, H(i,j), by assigning the N scene pixel 
spectra to columns and K spectral channels to matrix rows.  The data can then be represented by a linear column and/or 
row expansion. 
  
The expansion in terms of the columns leads to  
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where M is the expansion length. The matrix S contains as columns the spectra selected as end-members to represent the 
data, and the matrix F contains the fractional contribution of each end-spectrum to each pixel. The matrix Rs (i, j) is the 
error or residual matrix resulting from truncation of the expansion (M<N).  Note that if the end-member spectra are pixel 
spectra drawn from the data, F can be thought of as an inventory of the abundance of materials present in each end-
member within a pixel. 
 
The expansion in terms of rows, leads to 
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where L  is the expansion length. The matrix Im is a matrix of single-channel images of H at channels selected as end-
members (end-images) and the matrix C contains the expansion coefficients, the contributions of the L end-images to 
each data image.  Again, Rc(i,j) is the error due to truncation (L<K).  
 

 



 

For purposes of data compression, it is useful to perform a combined expansion. The combined expansion leads to 
 

                                                (3) 
),(),(),(),(),( jiRjkFklHmliCjiH

L

l

M

k
+=∑∑

 
The matrix Hm is a “mini-cube,” an L x M matrix of end-members (end-images x end-spectra). The coefficient matrices 
C and F retain the same meaning.  While the equations are standard linear relations, there are many possibilities for the 
explicit selection of vectors for S, F, C and Im.  Eigenvector analysis of either the autocorrelation matrix or the 
covariance matrix leads to rapidly converging expansions. Convex analysis leads to sparse coefficient matrices and make 
expansions in extreme vectors an attractive alternative not only for purposes of interpretation but also for increased 
compression ratios for equal levels of distortion. 
 
For example, the commonly used principal components analysis performs a row factorization of the data matrix. The 
channel images are rotated into eigen images, using the eigenvectors of the channel covariance matrixΣ as the 
channel image coefficient matrix C.  In diagonalizing the covariance matrix, the eigenvectors are ordered by 
eigenvalue with the largest eigenvalue, eigenvector pairs being selected for use. 

Φ

λ
 
The covariance matrix is given by 
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where h and h  represent individual pixel spectra and the mean pixel spectrum, and E is the expectation operator, that is 
estimated by the average over the entire data cube. 
 
The eigen images are determined by  
 

 . (5) HTΦ=Im
 
Errors in the estimated truncation of the covariance matrix can be determined from the ordered set of eigenvalues with 
the mean square error, D, and relative mean square error, R, between the original and the approximation using L of the N 
eigenvector, eigenvalue pairs being given by 
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The reduction is optimal in terms of expansion length. It has the smallest residual errors for a given expansion length. 
The technique is effective for compression of channels, typically reducing a hyper-spectral image to 10-20 eigenvectors6. 
 
Compression ratio for matrix factorizations 

The formula for the compression ratio, CR, based on factorization can be expressed as )*(
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For most hyper-spectral data sets the number of pixels far exceeds the number of channels.  When the number of pixels 

is very large compared to the number of channels, the compression ratio simplifies to FM
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*
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Thus we see for channels, the most efficient representation in terms of basis size, L, will lead to the best compression 
while the smallest product of basis size and fraction of non-zeros leads to the highest compression ratio for pixel spectra.    
For non-convex factorization methods, the abundance array is not sparse and the compression ratio is simply the ratio of 
the number of channels to the number of basis functions.  The maximum compression ratio results occur when only one 
basis or end-member is chosen and equals the number of channels.  For a full rank data set, the lower limit of CR=1, 
occurs for non-convex methods when the size of the basis is equal to the number of channels.  Compression from non-
convex methods occurs when the data can be approximated by reduced rank approximations.  
 
For convex methods, the fraction of non-zero abundances gradually decreases as the number of end-members increases, 
as more and more of the data is described by blends of only a few end-members.  The number of end-members can far 
exceed the number of channels and still lead to a substantial compression ratio.  This will be illustrated in section 3 for 
an AVIRIS Harrisburg airport Scene. 
 
It should be noted, however, that the compression ratio quoted here ignores any overhead required in the storage of 
sparse matrices.   
 
Convex factorization algorithms 
 
Two convex factorization (CF) algorithms, MinR and MaxS, have been developed for the sequential factorization of 
hyper-spectral and multi-spectral data. In addition a Modified Gram Schmidt (MGS) factorization was implemented. The 
objective of these algorithms is to define the end-members and expansion coefficients of the data matrix.  Since the 
procedure is mathematically the same in either row or column processing, we refer to both end-spectra and end-images 
as extreme vectors.  
 
There are two steps to each cycle of the sequential factorization algorithms. The first step selects the vector to be added 
to the current basis or convex span.  The second step is the removal of the projection of the currently chosen vector from 
all of the remaining data vectors. 
 
The currently implemented selection step is the same for all factorization techniques. The criterion used to determine the 
next extreme vector is its length.  Length is the distance that the vector lies outside the sub-space defined by the current 
basis in the MGS algorithm, or outside the convex span of the current convex cone for the CF algorithms. The first 
vector is chosen arbitrarily, typical choices are the vector of largest magnitude or the vector least like the average.    
 
The primary difference among the algorithms is the projection step, although the different projections ultimately lead to 
different vectors being selected in subsequent steps.  In the MGS implementation, the selected vectors form a highly 
linearly independent basis. In sequence, the vectors selected are those that are least like those currently chosen. The 
MGS method can determine the rank of the data.   In the CF methods, the vectors are extreme points of the convex cone 
of the data.  The extreme vectors are not necessarily linearly independent and they can form a over-complete basis.  
 
In the MGS algorithm, the projection is an orthogonal or perpendicular projection. The orthogonal projection leads to the 
minimum in residual. The convex factorization methods use oblique projections. The two convex factorization 
algorithms, the minimum residual, (MinR), and the maximum sparseness, (MaxS), technique are based on different 
optimizations.  
   

 



 

The MinR convex projection will be as close as possible to the orthogonal projection while maintaining the positive 
abundance constraints.  It differs from the orthogonal projection only when a constraint is active.  An active constraint 
leads to the current vector or one of the previous extreme vectors being removed from the expansion.  If no constraints 
are active, the orthogonal projection is used and the new extreme vector is added to the description of the data vector 
with no prior one being removed.  MinR is analogous to a step wise constrained least squares algorithm, although the 
active basis is in general different for the individual data vectors; extreme vectors are added and removed from the data 
vectors independently.  The resulting expansion coefficients are equivalent to the coefficients of a constrained least 
squares calculation, with a subset of the selected basis used to model each pixel spectra.   
 
The maximum sparseness, (MaxS), algorithm attempts to model each data vector with as few extreme vectors as 
possible.  In the MinR technique, the convex projection differs from the orthogonal projection only when a constraint is 
active, and a smaller projection is required to keep all abundances equal to or greater than zero.  In contrast, the MaxS 
algorithm places emphasis on increasing the sparseness of the coefficient array and seeks projections that will remove 
prior extreme vectors.  The algorithm maximizes the number of zero abundances subject to the positivity constraints and 
a monotonic decrease in residuals.  
 
The MaxS algorithm differs from the MinR technique only when no constraints are active, and MinR would add the new 
extreme vector to the current description.  In the maximum sparseness algorithm, whenever the orthogonal projection 
does not activate constraints, a larger oblique projection is sought that will cause a prior extreme vector to be removed.  
If no prior extreme vector can be replaced with a simultaneous reduction in residual, the orthogonal projection is used.   
The different projections are illustrated in Figure 1. The length of the vertical is the residual norm for the orthogonal 
projection. The lengths of the oblique rays are the residual norms for the MinR and MaxS oblique projections, 
respectively. To have a reduc on in residual, the length of the oblique rays must be shorter than the length of the prior 
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Figure 1. Orthogonal projection of the modified Gram Schmidt, (MGS), factorization and the oblique projections of the minimum 
residual, (MinR), and maximum sparseness, (MaxS), convex factorizations. 
 
Fractional abundances 
 
The projection coefficients satisfy inequality constraints that ensure that the end-member spectra are added positively, 
but their sum is not restricted.  With the sum to one constraint not applied, the convex basis forms a convex cone rather 
than a convex hull. The additional degree of freedom leads to a better fit to pixel spectra and avoids the need to form 
simplices during the processing.  In the convex cone approximation, the interpretation of the coefficients can be made in 
terms of fractional contributions to the total radiance or reflectance.  Summing the channel radiances in the mixed pixel 

and end-member spectra leads to , where I
PixelA

A
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Pixel  is the sum of the channel radiances in the pixel and IA 
is the sum of the channel radiances in the Ath end-member spectrum. The equality is in the least squares sense assuming 
that the channel residuals sum to zero.  The fractional contribution of radiance from end-member A to the pixel radiance 
is, the quantity IAfA/IPixel .  Note that this relation holds regardless of whether the sum to one constraint is applied and 
active. To obtain an estimate of the pixel fill or material abundance in the pixel, it is necessary to address the variability 
in material spectra that exists in the scene.  We include the variability in the material spectra by the inclusion of an end-
member basis for each material. 

 



 

3.  APPLICATIONS 
 
In this section three applications of the methods are described. First, the models are compared with other autonomous 
end-member algorithms and applied to the AVIRIS Cuprite Nevada scene for comparison. AVIRIS is a hyper-spectral 
sensor with 224 spectral channels from 0.4 µm to 2.5 µm. The second application is to a AVIRIS scene of the Harrisburg 
Pennsylvania airport. In this application, the compression capabilities of the MGS and convex factorization techniques 
are compared. Finally a synthetic LANDSAT scene derived from the AVIRIS Harrisburg airport, was processed to 
illustrate the capabilities of the convex techniques for multi-spectral imagery. 
 
Three autonomous end-member algorithms were compared recently by Michael and Edwin Winter7. These include 
ORASIS8, N-FINDR9 and Iterative Error Analysis (IEA)10. These were also compared to the interactive pixel purity 
index method11. All were applied to the AVIRIS Cuprite Nevada scene and the results were found to be similar for all of 
the methods. 
 
ORASIS is a suite of codes that can find end-members from a scene autonomously.  It uses a Modified Gram-Schmidt 
algorithm to factor the data matrix, followed by a shrink wrapping technique to find an outer simplex12,13.  After the end-
members have been found, a constrained linear mixing model can be used to obtain material abundance maps.  
Alternatively, to maintain speed for real time processing, ORASIS has the option of skipping the shrink-wrapping, using 
the vectors selected by the modified Gram Schmidt procedure and a set of filter vectors14 derived from unconstrained 
least squares. The “abundances” are not sparse as a consequence of using filter vectors and any resulting compression 
comes from the convergence of the expansion. 
 
N-FINDR is an end-member code that runs autonomously and finds pure pixels that can be used to describe the mixed 
pixels in the scene.  The algorithm “inflates” a simplex within the data and selects the largest volume simplex.  The end-
member determination step of N-FINDR is fast, but like ORASIS, a constrained linear mixing model is required to 
obtain abundances, a time consuming step. It has been estimated7 that the constrained un-mixing takes four times longer 
than the unconstrained least squares un-mixing. 
 
The Iterative Error Analysis (IEA) approach performs a sequence of constrained un-mixings, starting with the data point 
(spectrum) that is least well modeled by the average and selecting additional end-members from the poorest modeled 
data points at each step. The method finds extreme points in the data to use as end-members. At each step a simplex if 
formed from the selected data points. The process terminates when the number of end-members sought are found or a 
selected tolerance on residual error has been met. 
 
Our MGS method is similar to the ORASIS mode when shrink-wrapping is not applied. The first several end-members 
selected by the minimum residual factorization algorithm and the maximum sparseness algorithm will resemble those 
obtained by single simplex techniques.  The distinctions between single simplex methods and the extreme vector 
approach are illustrated in Figure 2.  Outer simplex methods find points outside the data array while inner simplex 
methods seek to use data points. When selecting fewer end-members than the rank of the data, all of the techniques seek 
linearly independent vectors.  The similarity was confirmed by our processing of the Cuprite scene.  
 
The Cuprite site has been the focus of several AVIRIS measurement campaigns and the collected data has been 
subjected to much analysis. The site is a mining area in southern Nevada and has little vegetation. The data that was used 
in this work contains 50 of the spectral channels 1.991 µm to 2.479 µm of ATREM corrected reflectances. The data is 
supplied as sample data with ENVI. The three major materials present are alunite, kaolinite and calcite. The Cuprite 
scene was processed with both the MGS and convex cone factorization approaches. The three most abundant spectra 
found by the factorization techniques are similar in shape to the laboratory spectra of alunite, kaolinite and calcite and 
strongly resemble end-members extracted by other techniques7. The magnitude of the laboratory reflectance spectra 
depend on particle size15, while atmospheric correction artifacts affect the magnitude as well as details in shape of the 
AVIRIS measurements. N-FINDR and our approach find actual pixel spectra in the data, while the ORASIS and IEA 
end-members are scaled.  The first six end-members found by the MGS and convex cone factorization techniques were 
the same. These extracted end-members are plotted in Figure 4a and Figure 4b. Once constraints become active, 
departures from the MGS and convex methods are expected. Some extreme points in the data can be modeled to within 
the desired tolerance by the unconstrained basis set and they are not selected by the MGS method.   
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 (a)                                                                                (b) 

Figure 4.  (a) The three major component end-member spectra extracted from the AVIRIS Cuprite Scene. (b) Three 
additional end-member spectra common to both the MGS and CF methods. 
 
AVIRIS Harrisburg airport scene 
 
An AVIRIS Harrisburg airport data set was selected as a 
test case for a data compression study.  An image is 
shown in Figure 5.  The scene is a 401x401 pixel array.  
The data set contains all of the 224 AVIRIS spectral 
channels from 0.4 µm to 2.5 µm. We used the data 
directly with no atmospheric correction.  We studied the 
compression characteristics of our CF method and our 
MGS method as a function of the number of end-members 
or basis functions.  The compression ratio (CR) is defined 
in section 2.  Increasing the number of end-members used 
to describe a dataset improves the fidelity of the data but 
also the amount of information that must be stored. The 
compression ratios for both decrease monotonically, but 
the behavior is quite different for the two methods.  The 
MGS compression ratio is governed by the number of 
channels divided by the number of basis functions.  The 
convex factorization method maintains high compression 
ratios as the number of end-members increases.  The 
comparison is illustrated in Figure 6a.  At 40 end-
members the maximum sparseness CF compression ratio 
is 51/1, the minimum residual CF compression ratio is 
35/1. The MGS compression ratio for 40 basis functions is reduced to less than 6/1 and is 28/1 at 8 basis functions. 
However the unconstrained perpendicular projections of the MGS technique reduce the residual errors at a much faster 
rate. A comparison of the spectral errors of the MGS and minimum residual CF method for compression ratios of 28/1 
and 35/1 are given in Figure 6b. We have plotted the average error for all pixels, as well as the pixel with maximum 
error.  The average pixel spectrum from the scene is included for signal level comparison.  The magnitudes of the 
average errors are similar for the CF and MGS methods. The convex factorization does better at reducing the maximum 
magnitude of errors for a given level of compression ratio.  The convex factorization contains many more vectors at a 
given compression ratio, and these vectors account for the reduction in outlier spectral features. Real advantages to using 
the extreme vectors rather than an MGS basis will depend on efficient compression algorithms for the sparse abundance 
matrices. The effort requires further investigation.     

Figure 5. Composite of AVIRIS Harrisburg airport scene 

 



 

0 20 40 60 80 1
0

40

80

120

160

200

240

00

C
om

pr
es

si
on

 R
at

io

Number of End-members

 Maximum Sparseness (CF)
 Minimum Residual (CF)
 Modified Gram Schmidt

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

R
ad

ia
nc

e

Wavelength(nm)

 Average Spectrum
 MGS Maximum |Error|
 Convex Maximum |Error|
 MGS Average |Error|
 Convex Average |Error|

 
 (a)                                                                                    (b) 

Figure 6.  (a) Compression ratio achieved for convex factorizations (CF) and Modified Gram Schmidt  factorization of the Harrisburg 
airport scene. (b) Errors due to compression using the minimum residual factorization CR=35/1 and Modified Gram-Schmidt 
CR=28/1 on the Harrisburg airport scene.  
  
Multi-spectral application 
  
We illustration this capability using the AVIRIS Harrisburg Airport scene discussed above. The spectral resolution was 
reduced to the six visible NIR LANDSAT channels to simulate LANDSAT data. The CF algorithm was applied to the 
multi-spectral data and fifty end-members were found. The abundance maps for 11 of the first 16 end-members are 
shown in Figure 7.  The algorithm found several more unique features within the data than the six channels would imply. 
In comparison with the results for the six channel data versus the 224 channel full data set, it was found that while the 
end-members were chosen in a different order, 18 of the first 20 unique pixel spectra selected as end-members of the full 
data set were also selected form the simulated LANDSET data. The same pixels were chosen as the most unique.  
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Figure 7.  Spatial Details contained in 11 of the first 16 end-members selected by CF for the 6 channel synthetic LANDSAT image of 
the Harrisburg airport 
 

4.  CONCLUSIONS 
 
Our CF approach provides a physical model for hyper-spectral and multi-spectral imagery data.  Materials and their 
spectral variations induced by environmental and illumination variations are modeled with scene spectra that are 
extracted as end-members. The approach leads to multiple mixing models with subsets of the end-members representing 
the materials in the scene. Both end-members and abundances are determined simultaneously and autonomously. The 
method provides a unique processing capability for multi-spectral data.   It is not limited by the number of channels and 
can extract the spatial and spectral description of several more materials than the number of channels. Geometrically the 
over-completeness of the extracted basis sets is a result of the direct use of extreme points as illustrated in Figure 2. 
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