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ABSTRACT 
 
A multiple simplex endmember extraction method has been developed. Unlike convex methods that rely on a single 
simplex, the number of endmembers is not restricted by the number of linearly independent spectral channels. The 
endmembers are identified as the extreme points in the data set. The algorithm for finding the endmembers can 
simultaneously find endmember abundance maps. Multispectral and hyperspectral scenes can be complex and contain 
many materials under a variety of illumination and environmental conditions, but individual pixels typically contain only 
a few materials in a small subset of the illumination and environmental conditions which exist in the scene. This forms 
the physical basis for the approach that restricts the number of endmembers that combine to model a single pixel. No 
restriction is placed on the total number of endmembers, however.  The algorithm for finding the endmembers and their 
abundances maps is sequential. Extreme points are identified based on the angle they make with the existing set. The 
point making the maximum angle with the existing set is chosen as the next endmember to add to enlarge the endmember 
set.  The maximum number of endmembers that are allowed to be in a subset model for individual pixels is controlled by 
an input parameter. The subset selection algorithm is sequential and takes place simultaneously with the overall 
endmember extraction. The algorithm updates the abundances of previous endmembers and ensures that the abundances 
of previous and current endmembers remain positive or zero. The method offers advantages in multispectral data sets 
where the limited number of channels impairs material un-mixing by standard techniques.  A description of the method 
is presented herein and applied to real and synthetic hyperspectral and multispectral data sets. 
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1.  INTRODUCTION 
 
We have developed convex factorization techniques that can automatically generate sets of endmember spectra for 
hyperspectral and multispectral imagery.  Linear mixing models and endmember abundances are determined 
simultaneously with endmember extraction.  The method is based on techniques developed for hyperspectral scenes1. 
The addition of constraints on the number of endmembers allowed in single-pixel mixing models enables application of 
the method to the extraction of larger numbers of endmembers from multispectral scenes.   
  
Typical scenes may contain many materials and each material will have spectral variability. Even after atmospheric 
correction, environmental and illumination effects still persist in the data and more than one spectrum is typically 
required to describe a material. The number of materials and their spectral variations may exceed the rank of the data 
sets, the number of linearly independent channels. The standard linear mixing model is based on a set of material spectra 
or endmember spectra chosen to model the scene. Each pixel is modeled using the set as a basis.  The basis must be 
linearly independent and its dimension is dictated by the rank of the endmember spectra rather than by the number of 
materials and spectral variations that are present in the data.  This limitation leads to poor estimates of material 
abundances when a basis is inadequate to represent the material and its spectral variations. A collection of local models, 
each describing a small number of materials and their environmental variations, would provide a more desirable 
description of a scene.  Strategies have recently been developed for determining abundances when a set, or ‘bundle’, of 
spectra is used to describe each material.  These include a linear programming technique2, a regularized constrained 
least-squares approach3 and a stochastic mixing model approach4. Alternatively, stepwise constrained least-squares 
approaches can be used to select subsets of endmember spectra to model each pixel spectrum5,6. These linear 
programming and least- squares procedures require the existence of an adequate set of endmember spectra that describes 
the scene materials and their spectral variability. 
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Several endmember extraction procedures have been developed. Autonomous algorithms include ORASIS7, N-FINDR8 
and Iterative Error Analysis (IEA)9. These algorithms were compared recently10. They were also compared to the 
interactive pixel purity index method11. ORASIS is a suite of codes that can find endmembers from a scene 
autonomously.  It uses a Modified Gram- Schmidt (MGS) algorithm to factor the data matrix, and then a shrink-
wrapping technique is used to find an outer simplex12,13 that encloses the data. The extreme points of the outer simplex 
need not be data points. After the endmembers have been found, a constrained linear mixing model can be used to obtain 
material abundance maps.  Alternatively, to maintain speed for real-time processing, ORASIS has the option of skipping 
the shrink-wrapping, using the vectors selected by the MGS procedure and a set of filter vectors14 derived from 
unconstrained least squares. In this mode, the ORASIS procedure finds an orthogonal basis to fit the data. Our MGS 
method is similar to the ORASIS mode when shrink-wrapping is not applied. N-FINDR is an endmember code that runs 
autonomously and finds pure pixels that can be used to describe the mixed pixels in the scene.  The algorithm finds an 
inner simplex within the data and selects the largest volume simplex.  After the endmember determination step, N-
FINDR uses a constrained linear mixing model to obtain abundances. The IEA approach performs a sequence of 
constrained un-mixings, starting with the data spectrum that is least well modeled by the average and selecting additional 
endmembers from the most poorly modeled data spectra at each step. At each step a simplex is formed from the selected 
data spectra. The process terminates when the number of endmembers sought are found or a selected tolerance on 
residual error has been met. The selection of extreme vectors in our factorization procedure is very similar to the IEA 
approach.  The distinction is the limitation of IEA to finding linearly independent endmembers. All of these methods 
find linear-independent sets of spectra as endmembers.  The pixel abundances are obtained after selection via a common 
linear mixing model for all pixels.  Many hyperspectral data sets and most multispectral data sets contain more extreme 
spectra than the rank of the data. For such cases, these endmember procedures find and utilize only a subset of the 
extreme spectra in the data.    
  
The convex factorization method determines extreme spectra and abundances simultaneously. The abundance matrices 
are sparse, with pixels of similar scene materials being described by the small subsets of the endmembers. Each subset 
forms its own convex span, leading to a description of hyperspectral or multispectral data in terms of multiple sets of 
convex cones or simplices  with one set for each material or mix of materials. While the complete set of endmembers 
may be linearly dependent, the subsets in hyperspectral scenes are typically linearly independent.   Because of the natural 
tendency toward sparse representation, with only a few endmembers per pixel, enforcing a maximum allowed number of 
endmembers per pixel to ensure linear independence affects the modeling of only a small number of pixels.  
Constraining the maximum number of endmembers per pixel model to a value less than or equal to the rank guaranties 
that linearly-independent models are obtained. We have added this constraint to our convex factorization procedures.  
For multispectral applications, the total number of endmembers found can substantially exceed the number of spectral 
channels available. The maximum dimension of the subsets can be controlled to ensure that a well-conditioned model is 
obtained for each pixel and material type, while the total basis size is based on scene complexity and variability.  
  
A description of the matrix factorization techniques is given in Section 2.  In Section 3 the new method is compared with 
the Sequential Maximum Angle Convex Cone (SMACC) endmember extraction algorithm1 by applying both to a 
moderately complex AVIRIS hyperspectral scene of the Harrisburg Pennsylvania airport. Finally, the capabilities for 
endmember and abundance map extraction in multispectral scenes are illustrated by applying the approach to a synthetic 
LANDSAT scene of the Harrisburg airport- using the six visible and near-IR LANDSAT channels.  
    

2.  METHOD 
 
Endmembers of the hyperspectral or multispectral data sets are obtained by seeking a basis of ‘extreme vectors’.  
‘Extreme vectors’ are unique vectors having the property that they cannot be approximated by positive linear 
combination of other vectors belonging to the data set. ‘Non-extreme vectors’ can be approximated by a positive linear 
combination of the extreme vectors. The convex factorization  procedure uses a sequential convex cone strategy1 to find 
extreme vectors with the number of extreme vectors increasing until an acceptable threshold residual is reached or a pre-
specified number of extreme vectors has been found. A convex cone expansion requires that the expansion coefficients 
are positive, while a convex hull expansion additionally requires that the expansion coefficients for the spectrum or 
image model sum to one.  
 



 

 

2.1 Linear expansion of MSI/HSI data  
Hyperspectral and multispectral data are given a matrix representation, H, by assigning scene pixel spectra to its 
columns. The element, Hi,j, is the radiance in the ith  channel of the jth pixel. Given the high redundancy in the data, the 
matrix can be expressed by a convex factorization: 
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The N columns of S are the spectral endmembers.  NF is a matrix of expansion coefficients. It contains the contribution 
of each endmember to each pixel. The matrix NR is the error or residual matrix resulting from truncation of the 
expansion to a set of N endmembers.  In convex factorization, the majority of pixels are modeled by only a few of the 
basis functions and the majority of expansion coefficients are zero.  To accurately model complex scenes with a large 
number of materials and environment and illumination variations, a large number of endmembers is required.  With 
multispectral data, the number of materials and environmental variations can far exceed the number of channels of data, 
making standard linear mixing impossible. To have both spectral variability in the basis set and numerical stability, the 
number of basis functions per pixel model is restricted to a number, L, that is less than or equal to the rank, while the 
total number of endmembers, N, may exceed the rank.  By defining an indexing array ,,b  whose elements, ),( jlb , 

indicate the thl endmember in the model of the thj pixel, the expansion can be expressed as  
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Here a maximum of L endmembers from the set of N are used to model each pixel. The matrix NG contains the 
expansion coefficients of the L endmembers for the models of each pixel. The restriction to a maximum of L 
endmembers leads to the subset selection problem: find the best L endmembers out of the set of N endmembers to model 
a pixel spectrum. Optimum solutions to the subset selection problem have high combinatorial complexity and are 
computationally prohibitive for reasonably- sized endmember sets.  Stepwise procedures provide an alternative 
(suboptimal) solution, where the best endmember to add to the current set is selected for each pixel at each step.  Both of 
these techniques require the existence of the endmember basis prior to modeling.  They focus on the best model for each 
pixel individually.   
  
The approach taken here is a suboptimal method that focuses on the modeling of the entire scene.  There are two subset 
selection problems to be solved. First, the selection of N endmembers from the data set and, second, the selection of the 
subset of L endmembers from the total set of N to model each pixel. The processes of determination of the basis of N 
endmembers and the selection of L or fewer of them for each pixel model are performed simultaneously in a sequential 
procedure. The endmember selection is based on the reduction of residuals in the modeling of the entire scene. As each 
new endmember is selected, all pixel models are updated.  Update options include either adding the new endmember to 
the pixel model or leaving the pixel model unchanged. When the new endmember is added, it either enlarges the size of 
the pixel basis subset or maintains the size by replacing a prior endmember. The replacement option reduces the 
dependency of the models on the order of selection.  The selected endmembers are extreme vectors within the data. The 
subsets of the endmembers that model pixel spectra are convex sets. The subsets can provide multiple convex cone or 
simplex models for the scene.  
  
The method is based on the expansions expressed in Equations 1 and 2. The set of endmembers }{ ns  that form the 

matrix S  are selected from the columns }{ 0
jh  of H. The initial vector from the set }{ 0

jh   can be selected by several 
criteria.  We choose it to be the longest vector, which corresponds to the brightest pixel in the scene. Subsequent 
endmembers are selected as the pixel spectra that are the most poorly modeled with the current endmember set.   The 



 

 

thn endmember is the pixel spectrum with the largest residual norm in the n-1 endmember set.  After selection of the new 
endmember, the pixel models are updated by oblique projection. The array, q , is used to store the column indices of the 

data matrix that are chosen to form the columns of S,   }1,{ 0
)( Nnhs nqn ≤≤= .   A set of auxiliary vectors, 

}1,{ Nnwn ≤≤ are used in the processing.  The index of the selected vector is stored in q(n) and the auxiliary vector, nw , 

is defined as 1
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The jnO , are orthogonal projection coefficients. The parameters jn,α  are selected so the oblique projections force the 
expansion to satisfy the positivity constraints and the total limit on the number of basis functions permitted per pixel 
model. The lengths of the vectors n

jh  are the residual norms for the approximation of the vectors with the basis set of n 
vectors.  The expansion coefficients are obtained and updated for the nonorthogonal basis at each selection and 
projection step. We introduce the coefficient notation, n

jkF , , and the value of the expansion coefficient of the thk basis 

vector in its expansion of the thj column of H after its update on entry of the thn  endmember to the set. When nk = , 

the coefficient is the oblique projection coefficient given by Equation 3.  For nk <  , n
jkF ,  is an updated expansion 

coefficient of the thk previously selected endmember. Updates to the expansion coefficients on entry of the 
thn endmember to the basis are given by 
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nqkF  is the expansion coefficient in the approximation of nw  by the previously selected thk endmember.  For 

0, ≠n
jkF , the index array and expansion coefficient array for the pixels are updated. The index l  is determined, and then 

the index array and the expansion coefficients are set as 
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The process is continued until after N endmembers are found, or all of the residual norms of the pixel spectra are below 
an acceptable threshold. At termination, the expansion coefficients of the selected endmembers are updated to  
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The final set of coefficients }{ ,

N
jlG   are the elements of the expansion matrix of Equation (2). The set of vectors  }{ N

jh   

form the columns of the residual matrix, NLR , . 
 
2.2 Selection of oblique projections 
The oblique projections form the foundation of the approach. For positive data, such as spectra, the first endmember 
taken from the data will have a positive orthogonal projection coefficient with all of the other pixel spectra. The initial 
values of the expansion coefficients for the first endmember are the orthogonal projection coefficients. For 1>n , the 



 

 

previous expansion coefficients have to be updated for the nonorthogonal basis and oblique projections are required to 
satisfy active constraints.   
 
The constraints are maintained in the sequential process by the selection of the jn,α parameters to define the oblique 

projections. First the orthogonal projection coefficient, jnO , , is found. It is modified, as necessary, changing the 
projection to an oblique projection, to satisfy the constraints using the following procedure:  
 

1. If the orthogonal projection coefficient is not positive, this endmember cannot contribute to a convex model of 
this data vector and the expansion coefficient is set to zero:  

 If 0, ≤jnO ,  set 0, =jnα   and   0, =n
jnF . 

2. If the orthogonal projection coefficient is positive, then an oblique projection is sought. If none of the updates in 
Equation 4 leads to a negative coefficient, no positive constraints are active.  If one or more of the updated 
coefficients would become negative, if the orthogonal projection is used, a positive constraint is active.  An 
oblique projection is used instead of the orthogonal projection. The result is the removal of a previously selected 
endmember for the model.  The steps are 
(a)  Find the smallest value, minv , of the set  
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(b) If 1min ≤v , then a positive constraint is active. The end-spectrum, ks , with minvvk = will be removed from 

the convex model of pixel.  Set minvn =α . The oblique projection coefficient is set to jnjn
n

jn OF ,,, α=  . 

(c) If  21 min << v  then no positive constraint is active. However an oblique projection can be performed that 
will simultaneously replace the endmember, ks , with minvvk = , and simultaneously lower the residual. As 

illustrated in Figure 1, the length of the residual vector will be reduced, |||| 1−< n
j

n
j hh , for all jn,α satisfying 

20 , << jnα . If the current model size for pixel j is at its maximum, set min, vjn =α and jn
n

jn OF ,, = . If the 
current model size is less than the maximum, the orthogonal projection coefficient will lead to the greatest 
lowering of the residual. Set 1, =jnα  and jn

n
jn OF ,, = . 

 (d) If 2min ≥v , no positive constraint is active, and no replacement is possible with a simultaneous reduction in 
residual. If the current model size is less than the maximum, use the orthogonal projection.  Set 1, =jnα , and  

jn
n

jn OF ,, = . If the current model size is at the maximum, this endmember will not be used to model this pixel.  

Set 0, =jnα   and   0, =n
jnF . 

The previous expansion coefficients are updated using Equation 4 and the value of n
jnF , selected. Geometrically, when a 

positive constraint is active, the projection is oblique with 1, ≤jnα , as illustrated in Figure 1. With the replacement 

option active, the projection is oblique with .21 , << jnα  The lengths of the residual vectors for the orthogonal (solid 
vertical line) and oblique projections (dashed line and dotted line) are smaller than the previous residual vector with the 
unconstrained orthogonal projection leading to the smallest residuals. The convex projection will be as close as possible 
to the orthogonal projection while maintaining the positive constraints and the basis set size constraint.  It differs from 
the orthogonal projection only when one of these constraints is active.  An active constraint leads to one of the previous 
extreme vectors being removed from the expansion.  If no constraints are active, the orthogonal projection is used and 
the new extreme vector is added to the description of the data vector with no prior one being removed.  
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Figure 1.  Illustration of oblique projection and orthogonal projection.  For )20( , << jnα  the resulting residual vector is shorter than 

the residual of the previous step, with the largest reduction for, )1( , =jnα , the orthogonal projection. jn,α  is selected to be less than 

one to satisfy active constraints on positivity and force removal of a previous endmember. jn,α is selected to be larger than one to 

replace a previous endmember.  
 
The convex factorization results differ from those of the unconstrained factorization in several ways. The vectors, )(nw , 
obtained in the convex factorization do not form an orthogonal set. The expansion coefficients are not the optimal 
constrained least-squares expansion coefficients. They are stepwise-constrained least-squares coefficients.  The set of 
vectors, }{ ns , are a set of extreme vectors of the data set. Several of the columns selected will differ from those obtained 
for the orthogonal case. The extreme vectors need not be linearly independent. In general, there are more extreme points 
in a data set than the rank. Our algorithm is often stable when the rank is exceeded since the expansion coefficients are 
computed simultaneously and the pixel spectra are computed using a subset of the basis. Numerical problems occur only 
if the dimension of the subset selected to model an individual pixel spectrum exceeds the rank.  The procedure 
specifically avoids this possibility.  
 

3.  APPLICATIONS 
 
In this Section three applications of the methods are described. First, the method is applied to a hyperspectral data set, 
with and without a constraint on the number of endmembers that can contribute to a pixel model.  An AVIRIS scene of 
the Harrisburg Pennsylvania airport is used for the comparison.  In addition, a synthetic LANDSAT scene, derived from 
the AVIRIS Harrisburg airport scene, was processed to illustrate the capabilities of the new convex techniques for multi-
spectral imagery. These results are compared to similar processing of the full 224-channel AVIRIS scene. 
 
3.1 AVIRIS Harrisburg airport scene 
An AVIRIS Harrisburg airport data set was selected as a test case.  It is moderately complex and has several material 
types spatially resolved.  An image is shown in Figure 2.  The scene is a 401x401 pixel array.  The full data set contains 
224 AVIRIS spectral channels from approximately 0.4 µm to 2.5 µm. We used the data directly with no atmospheric 
correction.  We have studied the scene previously in an effort to determine the compression capabilities of our convex 
factorization methods. The pixel spectra of the scene were first normalized so that their integrated intensity was unity. 
This keeps the endmember selection process from favoring the brightest pixels over those that are spectrally most 
different. The pixel selected as the first endmember, however, was the brightest pixel in the scene. Two calculations were 
performed on the Harrisburg AVIRIS scene with the full 224-channels. One of the calculations constrained the 
abundances to be positive or zero, but placed no constraint on the number of endmembers that could be used to describe 
a pixel.  In the second calculation, the number of endmembers that could model a pixel was constrained to be less than or 
equal to 6.  
 



 

 

 
In the first calculation, the first one hundred 
endmembers were found. It was determined that fewer 
than 20 of the endmembers contribute to more than 5 % 
of the pixel models. The remaining endmembers model 
small localized objects, or a scattering of tiny isolated 
points. These are of interest for anomaly detection. We 
used the residual norm, the length of the residual vector 
to the pixel models, as a measure of the quality of the 
endmember models. The least-well-modeled pixel has 
the largest residual norm. In this case, the maximum 
residual norm was 0.010 or 1 % of the worst-case pixel’s 
original length.  The average residual norm for all 
modeled pixels was 0.0032. Of the pixel models, the 
most common contained contributions from 1 to 6 
endmembers with more than 62 % modeled with fewer 
than 7 endmembers. Less than 1 % of the pixel models 
included more than 10 endmembers.  The pixels that 
were modeled with a large number of endmembers 
typically had only minimal contributions from several of 
the endmembers in the model. If the endmembers with 
abundances of less than .05 are ignored, no pixels have 
contributions from more than 9 endmembers and only 1 
% of the pixel models exceed 6 endmembers.  Over 68 
% of the pixel models contain four or fewer endmembers 
with abundances greater than 0.05.   
 
The second calculation with the full 224-channel AVIRIS scene differed from the first in that the pixels models were 
constrained to a maximum of six endmembers. The first 100 endmembers were found. The endmembers found were 
identical in both pixel location and order of selection for the constrained pixel model calculation and the unconstrained 
calculation. The maximum residual norm, 0.011, and the average residual norm, 0.0033, were only slightly larger than 
those for the unconstrained case.  This indicates that when the constraint is active, the surviving endmember abundances 
are adjusted by the algorithm to compensate for the reduced number of endmembers in the pixel model.  The penalty for 
applying a maximum model size constraint for pixel spectra is quite small. This is a general result. For most pixels in a 
scene, a maximum model constraint will not be active. The remaining small percentage of the total pixels will be 
adequately modeled within the constraints in a scene. 
  
3.2 Multi-spectral application 
To investigate the capability of the method for multispectral scenes, a synthetic multispectral scene was generated from 
the Harrisburg AVIRIS scene using the six VIS-NIR channels of the LANDSAT sensor. The synthetic LANDSAT scene 
has the same spatial resolution as the AVIRIS scene. Again, the first 100 endmembers were sought, under the constraints 
of positive or zero abundance and a maximum of six endmembers in a pixel model.  As a preprocessing step, the 
synthetic LANDSAT scene was also normalized so that the integrated intensity over all six bands was unity.  The first 
endmember, selected as the brightest pixel, was the same pixel as in the full 224-channel cases. Of the remaining 
endmembers, several which were ubiquitous in pixel models were either selected as identical, adjacent or nearby pixels 
to those chosen in the full 224-channel calculations. However they were not chosen in the same order. In other cases, 
different pixels were chosen but the endmember spectra and the endmember abundances were very similar.  In all, fifteen 
of the major endmembers and their abundances for the 224-channel calculations were found to be highly correlated with 
fifteen of the major endmembers of the 6-channel calculations.   
 
In our comparisons, we concentrate on spatial information that is made available via the endmember abundance maps 
and illustrate similarities between the abundance maps and the spectral features of the endmembers.   The major 
endmembers are those that are selected early in the processing and those that are selected later but are contained in 
several pixel models. Together, they describe the main features of the scene. We found fifteen endmember pairs, one in 

Figure 2. Composite of AVIRIS Harrisburg airport scene



 

 

the 224-channel image and one in the 6-channel image, that have highly correlated spectra and abundance maps.   The 
first four of the fifteen pairs contain the first four endmembers selected by the 224-channel and 6-channel calculations.  
The order of selection differs beyond that for the two calculations. The fifth endmember pair contains the fifth 
endmember selected by the 6-channel calculation and the seventh endmember of the 224-channel calculations. For the 
first eight endmember pairs, the pixels selected as endmembers in the two calculations are either identical or adjacent. 
For the remaining pairs, the pixel locations are not adjacent, but the spectra are similar as are the abundance maps.  
 
The spectra and abundance maps for fifteen endmember pairs are illustrated in Figures 3 to 17.  Figure 3a and 3b contain 
the abundance maps for the first endmember pair for the full 224-channel scene and the 6-channel synthetic LANDSAT 
scene, respectively. The brightest pixel, (182,170) was chosen as the first endmember in both scenes; it is located on an 
aircraft in the center of the scene. The abundance maps for this endmember for the 224-channel and 6-channels scenes 
are very similar. In addition to other aircraft pixels, this endmember also contributes to pixel models of a central rooftop 
and other rooftops, and to a lesser extent to the paving and the tarmac. The scale is linear from dark to light representing 
abundances between 1 and 0, respectively.  The 224- and 6-channel spectra of the endmember are shown in Figure 3c. 
The abundance maps Figures 4a and 4b contain the abundance maps for the second endmember pair. Again the maps are 
very similar and define regions of vegetation. The endmember selected in both cases is a pixel in the lower left corner of 
the scene, (27,388). The spectra for this endmember pair are illustrated in Figure 4c. Abundance maps for the third 
endmember pair and its spectrum are shown in Figures 5a, 5b and 5c. The pixel location of the endmember in the 224-
channel calculation is (247,24) while the pixel selected by the 6-channel calculation was (245,24). These are two, nearly 
adjacent, spectrally similar pixels in the upper central region of the scene. They are both in a region that is shaded by a 
building. The endmembers contribute to several pixels that are shadowed by objects in the scene. Those near the aircraft 
are not aircraft pixels but rather the shaded tarmac, and similarly pixels modeled in the parking lot are in shaded areas. 
The endmember contributes to more pixel models in the LANDSAT scene, primarily on the right side of the image. 
Figures 6a and 6b contain the abundances of the fourth endmember pair. The same pixel (210,290) was selected by both 
the 224-channel and 6-channel calculations.  The endmember spectra are illustrated in Figure 6c. From the visible 
portion of the spectra, it can be seen that the pixel is a red object, located on a drive or road to the right of a large light-
colored building. This pixel contributes to the models of other red-colored objects in the parking lot as well as 
contributing to the modeling of the tarmac and an area of bare ground above the large parking lot. This endmember plays 
a larger role in modeling the tarmac in the 224-channel scene than in the 6-channel scene although it is minor constituent 
in the tarmac modeling. The abundance maps for the fifth endmember pair are illustrated in Figures 7a, and 7b.  The 
same pixel was chosen in both calculations (329,352). This pixel is an object in the upper central area of the parking lot 
in the lower right region of the scene. The pixel contributes to the models of paving and rooftops and other objects in the 
parking lot. The pixel contributes more strongly to the fully illuminated left side of a long narrow building on the upper 
right of the scene in the 224-channel calculations and it contributes to the modeling of the partially illuminated right side 
of the roof of the cargo storage building across the street. The pixel does not contribute to the modeling of the cargo 
storage building roof in the six-channel model. The spectra of the endmember pair are illustrated in Figure 7c. The 
abundance maps for a sixth endmember pair are illustrated in Figures 8a and 8b. A common pixel (204,2) at the top and 
center of the scene was selected by the two calculations. The abundance maps are again similar overall; however, there 
are differences. The pixel is used as a major contributor to the model of the structure in the lower right of the scene, to 
the right of the parking lot, in the 6-channel calculations and contributes more strongly to the area at the edge of right 
side of the cargo storage building. The spectra for this endmember pair are illustrated in Figure 8c.  
 
 



 

 

 
   (a)  (b) (c)    
Figure 3.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (1) are 
in Figures 3a and 3b, respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are shown in Figure 3c.  
 

 
   (a)  (b) (c)    
Figure 4.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (2) are 
shown in Figures 4a and 4b, respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are shown in Figure 4c.  
 

 
   (a)  (b) (c)    
Figure 5.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (3) are 
shown in Figures 5a and 5b, respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are in Figure 5c.  



 

 

 
(a) (b) (c)    
Figure 6.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (4) are 
shown in Figures 6a and 6b, respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are in Figure 6c.  
 

 
(a) (b) (c)    
Figure 7.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (5) are 
in Figure 7a, 7b respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The normalized 
radiance spectra of the endmember pairs are in Figure 7c 
 

 
(a) (b) (c)    
Figure 8.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (6) are 
in Figure 8a, 8b respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The normalized 
radiance spectra of the endmember pairs are in Figure 8c. 



 

 

 
(a) (b) (c)    
Figure 9.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (7) are 
in Figure 9a, 9b respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The normalized 
radiance spectra of the endmember pairs are in Figure 9c. 
 

 
(a) (b) (c)    
Figure 10.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (8) 
are in Figure 10a, 10b respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are in Figure 10c. 
 

 
(a) (b) (c)    
Figure 11.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (9) 
are in Figure 11a, 11b respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are in Figure 11c. 



 

 

 
(a) (b) (c)    
Figure 12.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (10) 
are in Figure 12a, 12b respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are in Figure 12c. 
 

 
(a) (b) (c)    
Figure 13.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (11) 
are in Figure 13a, 13b respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are in Figure 13c. 
 

 
(a) (b) (c)    
Figure 14.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (12) 
are in Figure 14a, 14b respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are in Figure 14c.  



 

 

 
(a) (b) (c)    
Figure 15.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (13) 
are in Figure 15a, 15b respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are in Figure 15c. 
 

 
(a) (b) (c)    
Figure 16.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (14) 
are in Figure 16a, 16b respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are in Figure 16c. 
 

 
(a) (b) (c)    
Figure 17.  Abundance maps derived from the full 224-channel calculations and the 6-channel calculations for endmember pairs (15) 
are in Figure 17a, 17b respectively. Arrows on the abundance maps point to pixel locations of the selected endmembers. The 
normalized radiance spectra of the endmember pairs are in Figure 17c. 



 

 

The abundances for the 224-channel and 6-channel calculations of the seventh endmember pair is illustrated in Figures 
9a and 9b, respectively. The pixels selected by both calculations are on an object or objects to the right of the cargo 
storage building. The 224-channel calculation selects pixel (245,148) while the 6-channel calculation selects pixel 
(245,150).  The spectra, illustrated in Figure 9c, differ primarily in the visible with the pixel (245,148) being much more 
reddish in color.  The abundance maps are qualitatively similar; however, the endmember plays a more dominant role in 
the modeling of the right side of the scene in the 224-channel calculations. Another difference is in the modeling of the 
aircraft. The 6-channel endmember plays a strong role in modeling the aircraft.  The abundances for the eighth 
endmember pair are illustrated in Figure 10a and 10b. The pixels selected were adjacent, pixel (214,299) for the 224-
channel calculation and (213,299) for the 6-channel calculation. The endmember pair spectra are illustrated in Figure 
10c. The spectra show that the object is yellow in the visible. It is located to the right of the cargo storage building. 
Interestingly, this endmember is a major contributor to the pixels on the painted lines on the tarmac. The abundances for 
the ninth endmember pair are illustrated in Figures 11a and 11b. In this case the pixels are not closely located. The 
spectra for this endmember pair are illustrated in Figure 11c. The spectra show that the objects in the pixels are blue in 
the visible. The pixel selected by the 224-channel calculations (233,261) is a blue object to the right of the large light-
colored building in the lower central region of the scene. The pixel selected by the 6-channel calculation, (356,353), is a 
bluish object in the large parking lot in the lower right region of the scene. The pixels contribute to models of several 
objects as well as paving. Note that this endmember is a contributor to the partially illuminated right side of the cargo 
storage building in the 6-channel calculations, while the full 224-channel model uses the endmember in the sixth pair.  
 
The abundances for the 224-channel and 6-channel calculations of the tenth endmember pair are illustrated in Figures 
12a and 12b, respectively. Different pixels are selected by each calculation. The 224-channel calculation selects pixel 
(72,358) while the 6-pixel calculation selects pixel (14,361). The endmember pair spectra are illustrated in Figure 12c, 
showing the pixels to be blue in the visible. The abundance maps show that the endmembers model two regions in the 
lower left area of the scene. The 224-channel calculation selects a pixel in the rightmost region as endmember while the 
6-channel calculation selects one from the leftmost region. The abundance maps for the eleventh pair of endmembers are 
illustrated in Figures 13a and 13b.  The 224-channel calculation selects pixel (146,394) as the endmember, while the 6-
channel calculation selects pixel (301,210). (146,394) is at bottom to the left of central under the two light-colored 
regions below the terminal buildings. Pixel (301,210) in the area to the right of the terminal buildings above the parking 
lot.  Both pixels are dark in the visible. Their spectra are illustrated in Figure 13c and are very similar. These pixels are 
used to model areas of vegetation, particularly the area to the right of the terminal buildings above the parking lot. While 
a minor contributor to models of the tarmac and the light-colored regions below the terminal buildings, in both 
calculations these features are more pronounced in the 224-channel endmember abundances than in the 6-channel 
endmember abundances.  
 
The abundance maps for the 224-channel and 6-channel calculations of the twelfth endmember pair is illustrated in 
Figures 14a and 14b, respectively. The 224-channel calculation selects pixel (135,93) as an endmember. This pixel is on 
the partially illuminated side of the fuselage (wing) of an aircraft in the upper central part of the tarmac. Pixel (152,208) 
is in the notch above the “L” shaped structure. It appears to be partially shadowed by the structure.  The abundance maps 
are very similar as are the spectra illustrated in Figure 14c. Figures 15a and 15b illustrate the abundance maps for the 
thirteenth endmember pair. Figure 15c illustrates the spectra.  The pixel selected by the 224-channel calculation is a 
light-colored object in the upper edge of the parking lot on the lower right side of the scene. The pixel selected by the 6-
channel calculations is a light-colored object on the edge of the tarmac to the left of the L-shaped building in the center 
of the scene. This endmember contributes to a large number of small bright objects in the scene as well as to a bright 
Section of tarmac along a side of the cargo storage building.  
 
Abundance maps and spectra for the fourteenth and fifteenth endmember pair are illustrated in Figures 16 and 17.  The 
abundance maps for the fourteenth pair are very similar. The pixels selected as endmembers are again from different 
regions of the scene. Pixel (147,309), chosen by the 224-channel calculation, is a small white object to the right of the 
terminal building. Pixel (228,158), chosen by the 6-channel calculation, is a pixel on the fully illuminated left side of the 
roof of the cargo storage building. The abundance maps show strong similarity. The abundance maps for the 15th 
endmember pair are less similar The 6-channel selected endmember models both the fully illuminated left side and 
partially illuminated right sides of the cargo storage building roof. The 224-channel calculation selected a pixel 
(238,123) on the partially illuminated right side of the roof of the cargo storage building. It should be noticed that the 
pixel location of the fifteenth endmember pair of the 6-channel calculation is the same pixel location (147,309) as the 



 

 

224-channel endmember of the fourteenth pair.  The 6-channel calculation is unable in this case to distinguish between 
the left and right side of the roof, that has slight variations in illumination of the same material. The spectra of all three 
pixels are all fairly similar; however, pixel (228,158) is the brightest of the three in the visible spectrum. The spectra of 
the pixels (147,309) and (238,123) differ primarily in the near-IR. (The 224-channel calculation selects an additional 
endmember with pixel location (225,166) on the left side of the roof of the cargo storage building This endmember is 
used exclusively in the full-channel models of the left side of the roof. Its spectrum is nearly identical to that of 
(228,158), the pixel chosen from the left side of the roof by the 6-channel calculation. There is no corresponding 
additional endmember selected by the 6-channel calculation.  The subtle differences in spectral shape in the near-IR are 
not characterized well enough by the 6-channel spectra to make the same distinctions as the 224-channel calculations in 
the case.    
 
The remaining endmembers in both calculations contribute to modeling small local variations in the large features of the 
scene, providing models for sets of spectrally similar isolated small objects in the scene such as cars. The later 
endmembers and abundance maps are of interest in as candidate target pixels for detection algorithms. The endmembers 
and pixels modeled by them have anomalous spectral features. Further investigation is required to make a detailed 
determination of the similarities of the full-channel and six-channel selections of anomalous pixels.     

 
4.  CONCLUSIONS 

 
Our convex approach with constraints requiring positive abundances and constraint on the maximum number of 
endmembers for a pixel model provides a detailed physical description of hyperspectral and multispectral imagery data. 
Environmental and illumination variations can be included in the mixing models and the number of endmembers is not 
limited by the number of channels or bands of the sensor. Materials and their spectral variations induced by 
environmental and illumination variations are modeled with scene spectra that are extracted as endmembers. The 
approach leads to multiple mixing models with subsets of the endmembers representing the materials in the scene and 
provides detailed spatial distributions.  Endmembers, pixel models and abundances are determined simultaneously and 
autonomously. The method provides a unique processing capability for multispectral data.    
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