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ABSTRACT 

We describe a new algorithm, QUAC-IR (QUick Atmospheric Correction in the InfraRed), for automated, fast, 
atmospheric correction of LWIR (Long Wavelength InfraRed) hyperspectral imagery (HSI) and multi-spectral imagery 
(MSI) in the ~7-14 mm spectral region.  QUAC-IR is an in-scene based algorithm, similar to the widely used ISAC (In-
Scene Atmospheric Correction) algorithm. It improves upon the ISAC approach in several key ways, including 
providing absolute, versus relative, sensor-to-ground transmittances and radiances, as well as an estimate of the 
atmospheric downwelling sky radiance.  The latter is important for retrieving emissivity from a reflective (i.e., non-
blackbody) pixel.  The key aspect of QUAC-IR is that it explicitly searches for blackbody pixels using an efficient 
approach involving a small number of spectral channels in which the atmospheric radiative transfer is dominated by the 
water continuum.  This allows for fast and simplified Beer's Law (i.e., exponential) scaling of the path transmittance and 
radiance based on a compact library of pre-computed reference values.  We apply QUAC-IR to well-calibrated data from 
the SEABASS1 and MAKO2 HSI sensors.   The results are compared to those from a first-principles physics-based 
atmospheric code, FLAASH-IR. 
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1.  INTRODUCTION 
Hyperspectral imaging (HSI) technology provides a wealth of information for remotely identifying and characterizing 
surface materials and objects based on their spectral signatures.  Long-wave infrared (LWIR) HSI data may be analyzed 
to yield both surface temperatures and emissivity spectra.  This requires characterizing and correcting for the 
atmospheric contributions (transmittance, path radiance and illumination) and retrieving emissivity and temperature from 
the surface-leaving radiance, a process often referred to as temperature-emissivity separation (TES).  Since precise 
knowledge of atmospheric conditions is rarely available, the atmospheric description is usually derived from the image 
itself.  However, this is not a straightforward task in the LWIR, due to the complexity of the thermal radiation transport 
phenomenology as well as ambiguity resulting from the fact that the number of unknowns exceeds the number of 
spectral channels.   

 A number of algorithms for LWIR HSI atmospheric correction and TES have been developed in recent years.   Most 
rely on first principles atmospheric radiative transfer (RT) calculations3-9.  An alternative approach developed by 
Young10, called the In-Scene Atmospheric Correction (ISAC), relies on locating blackbody or near-blackbody materials 
in the scene, from which approximate atmospheric transmittance and path (upwelling) radiance are directly extracted.  
ISAC has a number of drawbacks:  the atmospheric spectra are not accurately normalized; there is no information on the 
illumination (downwelling radiance), which especially impacts the retrieval of low emissivity materials; the blackbody-
finding method is not foolproof; and occasionally a scene will not contain blackbodies.  Advantages of ISAC include the 
ability to accommodate some difficult-to-model atmospheric conditions, such as the presence of dust, as well as modest 
errors in the sensor spectral or radiometric calibration.  
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This paper presents a new in-scene method, called QUAC-IR (Quick Atmospheric Correction for the Infrared), for 
atmospheric retrieval in LWIR HSI.  QUAC-IR improves on ISAC in several significant ways.  It uses a small set of 
MODTRAN11 atmospheric RT calculations that are pre-computed and stored in a spectral library.  This allows for 
efficient removal of non-blackbody pixels and ties the atmospheric spectra to these calculations to produce quantitative 
transmittance and upwelling radiance spectra. QUAC-IR also provides an estimate of the downwelling radiance.  This 
enables the retrieval of emissivity spectra using a smooth emissivity-based algorithm and improves emissivity accuracy 
with other methods such as emissivity normalization.  Here we describe the QUAC-IR method and show results and 
comparisons with both ISAC and the FLAASH-IR first principles method8,9 for example data sets from the well-
calibrated SEBASS and MAKO sensors.  The advantages of QUAC-IR versus first principles methods include faster 
computations, code simplicity, the ability to accommodate deviations from ideal conditions, such as a dusty atmosphere 
and inaccuracy in the sensor spectral and radiometric calibrations, and its applicability to multi-spectral imagery. 

2.  ATMOSPHERE RETRIEVAL USING BLACKBODIES 
The LWIR spectral radiance measured by a sensor viewing objects on the ground (see Figure 1) can be written as 

 Lobs(λ) = B(Ts, λ)ε(λ)τ(λ) + [1 - ε(λ)]L↓(λ) + L↑(λ) (1) 

where λ is wavelength, ε(λ) is the composition- and temperature-averaged spectral emissivity of the surface pixel, τ(λ) is 
the total (diffuse plus direct) transmittance between the surface and the sensor, B(Ts, λ) is the surface Planck blackbody 
function at temperature Ts, L↓(λ) is the transmitted incident illumination (it includes the ground-to-sensor transmittance), 
and L↑(λ) is the atmospheric path radiance.  Ts is effectively an emissivity-weighted average within each pixel.  Eq. (1) 
is rigorous for Lambertian surfaces; for specular surfaces ε(λ) may be understood as the hemispherical directional 
emissivity and L↓(λ) as an effective quantity involving angular integration over the environment. We assume that the 
hyperspectral wavelength channels are narrow enough that within-channel variations in emissivity and the Planck 
function are not of concern.  For the common nadir-viewing geometry, the observed surfaces are predominantly 
horizontal or nearly so, and we assume that they are illuminated only by the atmospheric downwelling radiance.  In order 
to retrieve the pixel-dependent quantities, surface emissivity and temperature, we first need to determine the assumed, 
image-independent atmospheric quantities, L↑(λ), L↓(λ), and τ(λ). 

 
Figure 1.  Physics overview of atmospheric effects for LWIR HSI spectral imagery. 

Blackbodies, for which ε(λ) is very close to unity, simplify the process of determining some of the atmospheric 
quantities.  Nearly all scenes contain some blackbody or near-blackbody pixels.  These pixels may contain vegetation, 
water, or surfaces subject to strong cavity effects.  For such pixels, Eq. (1) becomes dramatically simplified, 

 Lobs(λ) = B(Ts, λ)τ(λ) + L↑(λ) (2) 

If the blackbody pixel temperatures are not all the same and are estimated from an atmospherically transparent 
wavelength, then a correlation plot of Lobs(λ) versus B(Ts, λ) yields τ(λ) as the slope and L↑(λ) as the intercept.  τ(λ) can 
be refined by setting its upper limit to unity, while L↑(λ) is independent of any transmittance assumption.  τ(λ) can also 
be refined by rescaling to an RT calculation.  As discussed later, L↑(λ) and τ(λ) can be combined to provide an estimate 
of the downwelling atmospheric radiance, L↓(λ). 



The most challenging part of this analysis is to find reasonably pure blackbody pixels.  The method used by ISAC is 
described in detail elsewhere10 and briefly summarized here.  First, a reference wavelength is found where the pixel 
brightness temperatures are highest, implying maximum atmospheric transparency; this is typically in the vicinity of 10 
microns.  Then the pixels are selected for which the reference wavelength yields the highest brightness temperatures; this 
step weeds out pixels with emissivities well below unity at the reference wavelength. Next, for the remaining pixels a 
Lobs versus B(T, λ) correlation plot is constructed at each wavelength, where T is the brightness temperature at the 
reference wavelength.  The top edge of the data cloud defines a smaller set of (presumably) blackbody pixels, from 
which τ(λ) and L↑(λ) are extracted by a regression fit. 

The ISAC method of selecting blackbody pixels generally works well, but has a couple of potential failure modes.  One 
is that it assumes that the atmosphere is cooler than the ground, which may not hold in nighttime conditions.  Another is 
that if there are very few blackbodies in the scene, and their temperatures are similar, the top edge of the correlation plot 
data cloud may be poorly defined, leading to inaccurate τ(λ) and τ(λ)results. 

3.  QUAC-IR METHOD FOR ATMOSPHERE RETRIEVAL 
The key steps in of the QUAC-IR algorithm are highlighted in Figure 2.  As noted above, QUAC-IR incorporates a 
novel method for finding blackbody pixels.  We first search for candidate blackbody pixels by using a Monte Carlo (i.e., 
random number) selection approach to uniformly sample locations in the image.  We quickly screen each pixel to see if 
it qualifies as a blackbody pixel.   This is done by computing the equivalent blackbody temperatures at a handful of 
"special" wavelengths spread across the sensor wavelength range and determining whether the standard deviation of the 
temperatures, σT, is sufficiently small to accept that pixel as a candidate blackbody pixel.  Typically, if σT<~0.4 K, then 
we tag the pixel as a candidate blackbody pixel.  If this threshold is set too low, then no blackbody pixels are found.  On 
the other hand, if it is set too high then too many poor-quality blackbody pixels are selected.  The optimum value of this 
threshold was found to vary slightly for each sensor over the range of ~0.2-0.6 K.  We generally seek ~500 candidate 
blackbody pixels, which are culled down to the best ~100 blackbody pixels by looking for the best blackbody fits at all 
the sensor wavelengths. 

 
Figure 2.  Overview of the key steps of the QUAC-IR algorithm. 



The "special" wavelengths used in the initial blackbody screening are indicated in Figure 3.  They correspond to spectral 
regions in which the transmittance is dominated by the water continuum, as opposed to a water line, contribution.  The 
significance of this selection is that for these regions the transmittance approximately obeys Beer's Law.  This means that 
the transmittance for an arbitrary water column amount can be scaled from a reference water column by, 

 τ(λ) = τ0(λ)α,  (3) 

where τ0 is the reference transmittance and α is the relative increase or decrease in the water column amount.  Because 
the transmittance doesn't exactly obey Beer's Law (i.e., the power law scaling in eq.(3)), we select a reference 
transmittance that most closely corresponds to an estimate of the humidity for the image under consideration.  The 
humidity estimate is based on obtaining an estimate of the depth of a strong line feature, such as the 11.7 µm line (see 
Figure 3.), which depends strongly on humidity.  The line depth estimate is obtained from taking the ratio of the standard 
deviations of the observed image pixels at two nearby wavelengths, 

 σLobs(λ1)/ σLobs(λ2) ≈ τ(λ1)/ τ(λ2),  (4) 

where λ1 is the wavelength at a line transmittance minimum and λ2 is a nearby transmittance maximum (i.e., 11.6 µm).  
Given the transmittance ratio, we can distinguish between the three humidity levels in Figure 3 and select the appropriate 
reference transmittance curve. The same reference transmittance curves can be used for any sensor altitude above the 
typical water scale height of ~2 km.  The physical motivation behind this expression is that (1) the upwelling L↑(λ) 
contribution to Lobs(λ) (see eq.(1)) is constant across the image (i.e., its variance is zero) and therefore does not 
contribute to σLobs(λ), and (2) because two nearby wavelengths are used, the ratio of the B(Ts, λ)ε(λ) factors at the two 
wavelengths is close to unity.  The largest source of error in this expression arises from the [1 - ε(λ)]L↓(λ) downwelling 
term which adds a wavelength-dependent bias to the standard deviation that is not removed by taking a ratio.  However, 
we minimize the impact of this bias by only including the brightest 50% of the pixels at each wavelength.  The brightest 
pixels tend to have the largest emissivities, ε~1, and therefore minimize the 1-ε~0 reflectance factor in the downwelling 
term. 
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Figure 3.  MODTRAN atmospheric transmission calculations for a LWIR HSI sensor showing the relative humidity 
dependence.  The continuum-dominated wavelengths used by QUAC for finding blackbody pixels are indicated by the 
arrows. 



For each candidate blackbody pixel, we perform a 2D Monte Carlo search over potential atmospheric temperatures, Tatm, 
and water column amounts, via the α parameter (see eq.(3), to find the minimum standard deviation of the surface 
temperatures, σT, at the special wavelengths.  As mentioned above, if σT<~0.4 K, then we tag the pixel as a candidate 
blackbody pixel. The search is constrained by estimating a plausible range of atmospheric temperatures and water 
column amounts directly from the data.  The search is done by rearranging eq.(2) to estimate the surface blackbody 
emission at each wavelength using the approximation, 

 B(Ts,λ) =  (Lobs(λ) - L↑(λ))/τ(λ) ≈ =  (Lobs(λ) - (B(Tatm, λ) (1-τ0(λ)α))/τ0(λ)α. (5) 

 The temperature at each wavelength is determined by inverting the blackbody function, 

 Ts = (C2/λ)/ln[C1/(B(Ts, λ) λ5)+1], (6) 

where C1 and C2 are the first and second radiation constants, respectively. 

An example of the candidate blackbody pixels selected for an airborne data collect over the DOE ARM site at Lamont, 
OK using the SEBASS sensor is shown in Figure 4.  The optimized Tatm and water column found separately for each 
pixel, based on eq.(5), are used to derive the estimated blackbody at all the sensor wavelengths.  As seen in Figure 4, this 
results in relatively smooth, blackbody-like curves.  Below ~8 µm and above ~13.5 µm, the atmospheric transmission 
gets small (see Figure 3), and the corrections become large and unreliable, as is evident from the large fluctuations from 
blackbody behavior. 

 
Figure 4.  Initial selection of candidate blackbody pixels (left panel) and the resulting effective blackbody functions (right 
panel) after correction for the path transmittance and upwelling components.  Radiance units are microflicks (µF) and 
wavelength units are microns (µm) throughout this paper. 

We use the candidate blackbody pixels to perform an initial linear regression, which provides a good initial estimate of 
the transmittance, τ(λ), and upwelling, L↑(λ), terms.  From eq.(3), we see that a plot of Lobs(λ) versus B(Ts, λ) for these 
pixels will provide τ(λ) from the slope and L↑(λ) from the intercept.  We require an estimate of the surface temperature, 
Ts, for each pixel, in order to define B(Ts, λ).  The temperature estimate is performed using eq.(6) at the sensor channel 
closest to 10.4 µm, where the atmospheric transmission is at a maximum (see Figure 3) - i.e., the signal is primarily due 
to the surface blackbody emission.  Some example regression plots comparing the blackbody-finding approaches for 
QUAC-IR and ISAC are shown in Figure 5.  The ISAC approach is based on an empirical method for finding potential 
blackbody pixels.  An initial regression is performed and the pixels falling below the linear fit are discarded, as they are 
deemed to be the least likely blackbody pixels of the initially selected pixels.  This procedure may be repeated several 
times to arrive at a final, best linear fit.  The QUAC-IR approach is based on explicitly finding blackbody pixels and, as 
is evident, provides a tighter linear correlation. 



 
Figure 5.  Comparison of the regression curves for QUAC-IR and ISAC for the DOE ARM site SEBASS data. 

The initial linear regression provides approximate, relative transmittance and path radiance.  We determine the absolute 
transmittance in two steps.  First, the absolute relative humidity (RH) is determined by comparing the ratio of the un-
normalized transmittance at two, widely spaced continuum-dominated wavelengths (we use 10.12 µm and 12.18 µm) 
and comparing to MODTRAN computed ratios.  As can be seen in Figure 3, RH is a reasonably sensitive function of this 
ratio.  We note that the ratio is insensitive to the overall normalization factor.  Once the RH is found, we normalize the 
transmittance to a MODTRAN calculation at 10.41 µm, near the transmittance maximum.  The correction of the initial 
relative path radiance requires an additive constant.  Determining this constant is equivalent to determining the effective 
air temperature for the sensor-to-ground path.  We can derive the air temperature from the difference in path radiance at 
two wavelengths, since the unknown constant does not enter into this difference, given by, 

 L↑(λ2)- L↑(λ1) = B(Tair, λ2)[1-τ(λ2)]- B(Tair, λ1)[1-τ(λ1)].  (7) 

The only unknown in eq.(7) is Tair. 

Given the absolute transmittance and path radiance we perform a second linear regression using corrected estimates for 
Ts (see eq.(2)).  The resulting transmittance and path radiance is used to reduce the initial set of candidate blackbody 
pixels to a final, best set.  This is done by using the transmittance and radiance to solve for the effective pixel blackbody 
curves at all the wavelengths and then culling out those pixels exhibiting the most non-blackbody behavior.  We fit the 
blackbody curves with a fourth order polynomial and look for deviations from the smooth fit.  We use a polynomial fit 
rather than a blackbody fit because it less sensitive to spectral miscalibration.  A few examples of the polynomial fit to 
pixel blackbody curves are shown in Figure 6.  As is evident, the candidate blackbody pixels are usually reasonable 
blackbodies; however small deviations from the smooth fits (and occasionally large deviations) can be seen.  Typically, 
we select the 20% of the pixels that agree the best with their fits. 

 
Figure 6.   Example candidate blackbody pixels (left plot) and their derived (i.e., via eq.(2) and the regressed transmission 
and path radiance) and fit curves (right plot).  The derived blackbodies are the thinner lines on top of the thicker fits; the 
small differences between these curves are used to determine the final selection of blackbody pixels.  



We use the final selection of blackbody pixels to perform a final linear regression.  The resultant transmission and path 
radiance agrees well with those derived from physics-based approaches, as can be seen in Figure 7.  Small differences 
are noted and it is not always the case that the physics-based approaches produce the best results.  They are more 
susceptible to sensor miscalibration than QUAC-IR. 

 
Figure 7.   Comparison of QUAC-IR and FLAASH-IR transmittance (x1000) and path radiance (microflicks) for very 
humid (left plot) and very dry (right plot) atmospheres. 

4.  EMISSIVITY RETRIEVAL (TEMPERATURE-EMISSIVITY SEPARATION) 
FLAASH-IR and QUAC-IR use the same TES algorithm.  It is based on re-arrangement of the basic radiance equation, 
eq.(1), to express the emissivity, ε(λ), in terms of the atmospheric quantities, the transmission and upwelling and 
downwelling radiances.  It yields a family of emissivity spectrum solutions associated with different surface 
temperatures Ts:    

 ε(λ) = (Lobs(λ) - L↓(λ)- L↑(λ)) / (B(Ts,λ)τ(λ) - L↓(λ)). (8)  

In order to derive pixel emissivities via a TES algorithm we need to supplement the QUAC-IR transmittance and path 
radiance with the downwelling contribution.  We can derive an approximate downwelling contribution from the 
transmittance and radiance, based on the assumption that the sensor is above most of the boundary layer humidity.  This 
approach applies to sensors at or above ~2 km altitude.  It is also restricted to the spectral range of ~8-13 μm, where 
water dominates the atmospheric transmission and path emission.  Neither of these constraints represents a serious 
limitation, as most sensors are flown above 2 km, and 8-13 μm spans most, if not all, of the useful data range for most 
LWIR HSI sensors.  The approximate expression for the downwelling is 

 L↓(λ) = (1-τ(λ)β)τ(λ)[L↑(λ))/(1-τ(λ))],  (9) 

where β is an empirically determined constant.  The term in the square brackets represents the effective source term for 
the upwelling path emission.  In the limit that Beer’s Law applied to all the wavelengths and all the surfaces were 
Lambertian reflectors, then β=2 would result, because the effective atmospheric emission column amount is about twice 
that for the upwelling path.  We have found that β=0.8 works the best for most data sets; the large deviation of this value 
from β=2 indicates that neither Beer’s Law or Lambertian reflection are good approximations for LWIR HSI data. 

The QUAC-IR approximation for the downwelling radiance is different from that used in the physics-based codes.  The 
physics-based codes assume Lambertian reflection and require pixels with reflective materials in order to derive the 
downwelling term based on RT calculations.  We compare the QUAC-IR and FLAASH-IR downwelling terms in 
Figure 8, for SEBASS measurements over the World Trade Center.  The most noticeable difference is the missing O3 
contribution for the QUAC-IR downwelling.  This arises because most of the O3 column is above the sensor altitude and 
hence does not contribute to the path transmission used to estimate the downwelling based on eq. (8).  This impacts the 
QUAC-IR emissivities in the ~9.3-9.8 µm region, where the O3 emission is significant.  It is most noticeable for 
reflective materials (i.e., ε<~0.7), and the error due to its neglect is proportional to the reflectance - i.e., R=1-ε.  
However, because the error due to the O3 contribution has the same spectral shape as the O3 emission band, it should be 
relatively straightforward to recognize its presence and remove it via spectral subtraction.   



 
Figure 8.   The left plot compares the QUAC-IR and SEBASS transmittance (x1000, top curves), path radiance (bottom 
curves), and downwelling (intermediate curves).  The QUAC-IR downwelling is generally smaller than that for FLAASH-
IR and it is missing the O3 contribution evident in FLAASH-IR.  The right plot shows the QUAC-IR retrieved emissivities 
(x1000) and the impact of the missing O3 emission downwelling component. 

A number of different methods for estimating Ts, and hence ε, have been devised based on plausibility of the ε spectrum.  
A very simple method is to normalize the maximum of the emissivity spectrum to a typical value, such as 0.98.  A 
second method, which is often used with multispectral data, enforces an empirical relationship between the emissivity 
spectrum maximum and minimum12. These two methods work well for natural terrain but fail for metallic and specular 
materials, which have higher reflectance. A more sophisticated method for T retrieval uses a library of likely materials, 
or blends thereof, as trials, finds the combination of material and T that provide the best fit to the pixel spectrum, and 
then inserts the best-fit T value into Eq. (2) to calculate the emissivity.  This method is time consuming but works very 
well when the library is sufficiently comprehensive.   

A versatile and fast method for emissivity retrieval, applicable to nearly all materials, is based on a smooth emissivity 
assumption12-15.  Noting that the downwelling radiance, L↓, is highly spectrally structured when it is dominated by clear 
sky, the amount of structure remaining in the ε solution depends on the balance between L↓ and B(T)τ in the 
denominator of Eq. (2), and thus is a function of T. In the FLAASH-IR8,9 and Lahaie14 TES methods, for a given trial T a 
trial ε is obtained by smoothing the spectrum calculated from Eq. (2), the result is inserted into Eq. (1), the error between 
the predicted and observed radiance is calculated, and the process is iterated to find the T value that minimizes the error.  
In FLAASH-IR the smoothing is performed by taking a running average of adjacent spectral points, typically five, 
whereas Lahaie13 performs the smoothing with a polynomial fit.   

The FLAASH-IR TES method is used with both the QUAC-IR and the FLAASH-IR-derived atmospheric spectra in the 
example described below.  This method cannot be used with ISAC, since ISAC does not provide a downwelling 
spectrum.  While emissivity normalization and the Gillespie method12 can be used with ISAC, these methods fall apart 
with reflective surfaces. 

5.  EXAMPLE RESULTS 
5.1 SEBASS data 

We illustrate the use of QUAC-IR with an LWIR hyperspectral image acquired in June, 1997 at the US Department of 
Energy’s Atmospheric Radiation Monitoring (ARM) site in Lamont, OK.  The image, labeled F8P013, is one of a set 
acquired with the Aerospace Corp.’s SEBASS sensor1 from an altitude of 5,000 ft.  The scene contains various materials 
whose spectral emissivities were either known in advance or measured in-situ.  

 



Figure 9 shows a false color emissivity image of the scene with some materials of interest notated.  Figure 10 compares 
the atmospheric spectra retrieved by QUAC-IR, FLAASH-IR, and ISAC.  The ISAC implementation is from ENVI 
(Environment for Visualizing Images, Harris Corp.) with the automated “Max Hits” and “Top of Bins” options.  The 
QUAC-IR and FLAASH-IR transmittance τ and upwelling radiance L↑ are in close agreement.  The ISAC transmittance 
spectrum is a relative one; a scale factor of 0.8 would bring it into good agreement with the others, except at a few 
wavelengths near 10 microns where the retrieval is ill-determined in this implementation.  The upwelling radiance can 
be approximately represented as an emissivity, 1-τ, times an atmospheric Planck function, so a corresponding scaling of 
the ISAC upwelling spectrum could be made to bring it into reasonable agreement with the others. 

 
Figure 9.   F8P013 emissivity image from FLAASH-IR processing, in false color (R, G, B = 9.25, 10.25, 11.25 microns). 

The approximations made in the current QUAC-IR downwelling estimate lead to substantial differences compared with 
FLAASH-IR, mainly due to underestimated water continuum and missing ozone emission at 9.6 microns.  However, the 
water line structure has roughly the right magnitude, and this is important for retrieving reasonable emissivity spectra for 
reflective materials. 

 
Figure 10.   Retrieved atmospheric transmittance, upwelling and downwelling spectra from QUAC-IR, FLAASH-IR and 
ISAC. 



Figure 11 shows several examples of emissivity retrievals from QUAC-IR and FLAASH-IR.  For the three higher 
emissivity materials the results are very similar and agree well with the available “truth” measurements.  The QUAC-IR 
result is especially accurate for the pond pixels, where there is excellent agreement with the true spectrum of water.  
There is a tendency for FLAASH-IR to generate lower emissivities than QUAC-IR for certain materials or surface 
temperatures, and in these cases we do not always know which algorithm is more accurate.  We have generally found 
that only with reflective (low emissivity) materials is FLAASH-IR consistently superior to QUAC-IR, due to its more 
accurate downwelling spectrum.  The main difference in shape between the QUAC-IR panel spectrum and the true 
spectrum is from the 9.6 micron ozone residual.  

 

 
Figure 11.  Example emissivity spectrum retrievals. 

5.2 MAKO data 

As a contrasting example to the agricultural DOE ARM Site, we considered the urban/light industrial scene centered on 
the Aerospace Corp. facility in El Segundo, CA, as highlighted in Figure 12.  This data was collected by the Aerospace 
Corp. MAKO sensor at an altitude of 6,000 ft. on 22 June, 2017.  MAKO is a second-generation follow-on to SEBASS 
and contains many improvements in the optical and data collection/processing areas2. Like SEBASS, MAKO has 128 
spectral channels covering the 7.8-13.4 µm spectral region. 

The retrieved TUDs (transmittance, upwelling, downwelling) spectra for QUAC-IR and FLAASH-IR are compared in 
Figure 13.  The most notable difference is in the region of the 9.6 µm O3 band.  The O3 feature is largely absent in the 
QUAC-IR downwelling spectrum for reasons discussed earlier.  While there are small offsets in the transmission and 
atmospheric path emission spectra, these differences are compensated for by slightly different temperatures in the TES 
process.  Thus, the retrieved emissivities are nearly identical, as can be seen in Figure 14. 

 

 



 

Figure 12.  Overview of the area for the MAKO data collection.  The top panel is a false color map of the LWIR spectral 
imagery in which the dark areas correspond to the coldest or most reflective pixels.  The bottom panel is a context RGB 
image of the collection area.  The area is centered on the Aerospace Corp. campus. 

 

 
Figure 13. The retrieved TUDs for QUAC-IR and FLAASH-IR. 

 

 



 
Figure 14.  Comparison of retrieved emissivities for QUAC-IR and FLAASH-IR.  The left panel compares several emissive 
pixels, with the highest emissivity corresponding to a tree, the middle spectra to dirt, and the lowest spectrum to a reflective 
roof.  The right panel compares more reflective roof pixels. 

6.  QUAC-IR SOFTWARE 
We have coded QUAC-IR in both IDL/ENVI and C++ languages.  The former is useful for efficient implementation and 
evaluation of new algorithms and the latter is better suited for fast processing in an operational environment.  Once a 
new algorithm has been tested and vetted in IDL/ENVI we then implement it in C++ code.  The QUAC-IR source code 
is relatively compact, comprising ~1000 lines in IDL/ENVI and ~2000 lines in C++.  There is a small database, ~15KB, 
of MODTRAN transmittance calculations.  Both versions run quickly on a single CPU.  For a SEBASS data cube 
(128x128 pixels, 128 bands), the IDL/ENVI version took ~0.3 sec to derive TUD spectra and an additional ~2 sec to 
perform the TES.  The C++ version took ~0.1 sec for the TUD and ~0.1 sec for the TES.  For comparison, FLAASH-IR 
took ~1 min to derive the TUD (it used the same TES as for QUAC-IR C++).  The time sink for FLAASH-IR, and all 
other physics-based codes, is the need to run a first principles RT code, MODTRAN in this case. 

7.  SUMMARY AND CONCLUSIONS 
In the example shown here, as well as in many other datasets in which the sensor is located around the top of the 
atmospheric boundary layer, we have found the new in-scene QUAC-IR method to retrieve quantitative emissivity 
spectra from LWIR HSI data.  Like ISAC, the method is computationally fast and is forgiving of sensor calibration 
artifacts and difficult-to-model atmospheric conditions. For high emissivity materials, QUAC-IR’s accuracy is 
comparable to that of the first-principles methods, while its ability to generate a downwelling radiance spectrum makes it 
able to handle much lower emissivities than ISAC.  Improvements to the downwelling estimation, particularly with 
respect to the ozone contribution, can be envisioned, and would lead to further increases in accuracy. 
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