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ABSTRACT 
 
This paper will examine the impact of cloud shadows on 
subpixel target detection. When data is collected by a low 
flying aircraft under partly cloudy skies, there are two main 
cloud-induced effects: shadowing, which results in 
diminished and spectrally altered ground illumination, and 
illumination enhancement of sunlit areas due to the photons 
scattered from the clouds into these areas. The work 
presented here examiknes the effects of cloud-induced 
illumination on the retrieval of reflectance signatures for 
target detection applications. The impact of cloud shadows is 
examined using forward simulations of fully and partly 
shadowed scenes using two hyperspectral reflectance images. 
One scene contains man-made elements as well as significant 
areas of vegetation, while the other scene is primarily dry 
rocky terrain with a region of dark vegetation. Spectral 
signatures of a blue roof and brown paint were randomly 
embedded into the two scenes at subpixel levels. The scene 
radiance is then simulated for fully shadowed, partly 
shadowed, and fully sunlit conditions. Target detection is 
performed on these radiance scenes after atmospheric 
correction. Detection results show improved performance 
when the sunlit and shadowed areas are segregated and 
processed independently rather than treating the whole scene 
at once. 
 

Index Terms— Spectral, simulation, shadow, clouds, 
visible, infrared 
 

1. INTRODUCTION 
 
The effect of cloud shadows on aerial imagery poses a 
problem in developing useful data products for agriculture 
and target detection applications. Shadows affect the ability 
to compare imagery, including multispectral and 
hyperspectral imagery (MSI and HSI), taken over periods of 
time, and the ability to quantify image data analytics. The 
illumination in cloud shadowed regions includes indirect 
illumination from a combination of light from the sun 
filtering through the clouds, and skyshine, the blue-
dominated light from the hemisphere of clear sky, which 
introduces a spectral variation into the shadow. Another 
effect of clouds is an adjacency effect, which is an additional 
brightening of directly sunlit areas due to light scattered by 
cloud edges. Application of retrieval techniques to sunlit 

areas in the vicinity of broken clouds, even as far as several 
kilometers away, leads to significant over-prediction of 
surface reflectance and aerosol optical depth. Several recent 
papers have examined the impact of 3D clouds on reflectance 
and aerosol optical depth retrieval [1-5]. This paper examines 
the effects of cloud shadows on spectral imagery used for 
target detection.  

In this paper, we investigate cloud induced illumination 
effects using the MODTRAN [6] and MCScene [7-9] codes 
to forward-simulate cloud shadowed spectral imagery. The 
basic forward modeling methodology is briefly discussed in 
Section 2. Section 3 will focus on the effects of cloud 
shadows on retrieved reflectance, and the use of these 
reflectance values in target detection algorithms. Section 4 
contains a summary of the work presented. 

 
2. FORWARD MODELING OF CLOUD SHADOWS 

 
2.1. MODTRAN-based Modeling Approach 
 
The simulated MODTRAN scenes included a fully sunlit 
scene and uniform cloud shadows which half-cover or fully 
cover the scene. The half-shadowed scenes have an abrupt 
transition between the shadowed and sunlit regions. This 
abrupt transition would not be found in real imagery where 
the cloud shadow would show soft edges from cloud optical 
depth variation, edge effects and the shadow penumbra.  

MODTRAN computes line-of-sight (LOS) atmospheric 
spectral transmittances and radiances over the ultraviolet 
through long wavelength infrared spectral regime. The 
radiation transport (RT) physics within MODTRAN provide 
accurate and fast methods for modeling stratified, 
horizontally homogeneous atmospheres. The core of the 
MODTRAN RT is an atmospheric "narrow band model" 
algorithm. The atmosphere is modeled via constituent vertical 
profiles, both molecular and particulate, defined using either 
built-in models, or by user-specified radiosonde or 
climatology data. The band model provides resolution as fine 
as 0.2 cm-1 from its 0.1 cm-1 band model. MODTRAN solves 
the radiative transfer equation, including the effects of 
molecular and particulate absorption/emission and scattering, 
surface reflections and emission, solar/lunar illumination, 
and spherical refraction. 

MODTRAN can be used to generate the appropriate 
spectral terms to simulate the spectral radiance image for a 
given scenario and surface spectral reflectance. The observed 



spectral radiance, L*, for a pixel with surface reflectance, ρ, 
is given by 
 L* = aρ/(1-ρeS) + bρe/(1-ρeS) + L*a (1) 
Here, ρe is a spatially averaged surface reflectance, S is the 
spherical albedo of the atmosphere, L*a is the radiance 
backscattered by the atmosphere, and a and b are coefficients 
that depend solely on atmospheric and geometric conditions. 
The values of a, b, S, and L*a are determined from 
MODTRAN simulations. These parameters can be 
determined for an observing sensor placed below a 
MODTRAN defined infinite plane-parallel cloud to simulate 
cloud shadows on the ground. 
 
2.2. MCScene-based Modeling Approach 
 
MCScene, a Direct Simulation Monte Carlo code for 3D 
atmospheric radiative transfer, can generate complex cloud 
shadow scenes from 3D cloud models with realistic structure, 
including thin and thick spots, holes, and the cloud adjacency 
effect. In the work presented here, a scene was simulated with 
a cloud shadow covering 2/3 of the image, while direct 
sunlight illuminated about 1/3 of the image. Figure 1 shows 
an illustration of the geometry used for the shadowed terrain 
simulation. The directly illuminated part of the scene also 
includes photons which have been scattered from the cloud, 
as well as transmitted through the cloud near the edge of the 
slab cloud. The shadowed region includes photons which 
have been scattered through the cloud, along with photons 
scattered from the atmosphere in to the shadowed region. 
 

 
 
Figure 1. The image illustrates the geometry used in the slab cloud 
MCScene simulation along with the photon pathways to the directly 
illuminated region of the terrain. 
 

3. EFFECTS OF CLOUD SHADOWS ON REMOTE 
SENSING DATA PRODUCTS 

 
3.1. MODTRAN-based Shadow Simulations 
 
Two spectrally different scenes were used in the MODTRAN 
simulations. They include the Rochester Institute of 
Technology (RIT) Target Detection Self-Test hyperspectral 

data, which was part of an airborne HyMap data collect over 
Cook City, MT [10], and an AVIRIS data collection near 
Yuma, WA [11]. The Self-Test scene contains a mix of rural 
and urban areas with several spectrally distinct materials, and 
the Yuma scene is primarily a dry rocky area with a region of 
dark vegetation. RGB images of the two atmosphere-free 
scene reflectances are shown in Figure 2. MODTRAN 
simulations were performed for shadowed and cloud free 
conditions for both scenes. The observer was placed at 1 km 
altitude viewing nadir. Other simulation parameters include a 
visibility of 23 km and use of MODTRAN’s mid-latitude 
summer atmosphere model. A 1 km thick cumulus cloud was 
placed over the scene with its base at 2 km altitude, and 
optical depths of 2 and 30. For these simulations, a full scene 
average reflectance has been used for ρe, the spatially 
averaged surface reflectance, which simplifies equation (1) to 
a simple gain and offset applied to every pixel in order to 
determine the radiance image from the reflectance image. 
 

 
 

 
 
Figure 2. RGB reflectance images of RIT Target Detection Self-
Test scene (top) and the Yuma, WA AVIRIS scene (bottom).  

 
The three simulated radiance scenes, full sunlit, half 

cloud shadowed, and fully cloud shadowed, have been 
atmospherically compensated to reflectance units using the 
QUAC algorithm [12-14]. QUAC is an in-scene approach, 
requiring only approximate specification of sensor band 
locations (i.e., central wavelengths) and their radiometric 
calibration; no additional metadata is required. Because 
QUAC does not involve first principles RT calculations, it is 
significantly faster than the physics-based methods and is 
often used in real-time applications. 



3.2. Target Detection Results for MODTRAN-based 
Simulations 

 
3.2.1 Self-Test Results  
For the target detection study, we focused on sub-pixel targets 
randomly placed throughout the scene. A blue roof spectral 
signature was extracted from the reflectance image and used 
as a target signature in the Self-Test scene. The standard 
Adaptive Coherence/Covariance Estimator (ACE) [15] 
detector was used to evaluate detection performance for the 
simulated scenes. Figure 3 shows the receiver-operator 
curves (ROC) for the detection of 400 subpixel targets 
varying from a fill-factor of 5% to 45% for a clear-sky case, 
two half-shadowed cases, and two fully shadowed cases 
where the cloud shadow was cast by clouds with optical 
depths of 2 and 30. The fully sunlit and fully shadowed 
simulations gave very similar detection results, whereas the 
half-shadowed scenes showed decrease detection 
performance. There is a clear trend of decreasing 
performance with increasing cloud optical depth, and 
therefore decreasing illumination in the shadow region.  
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Figure 3. ROC curves for blue roof subpixel targets in the RIT Blind 
Test Scene using the ACE detection algorithm. The results for the 
fully sunlit scene (black), fully shadowed scene (labeled full) and 
half cloud shadowed scenes (labeled half) for cumulus cloud of 
optical depths of 2 (blue) and 30 (red). 
 
3.2.2 Yuma WA Results  
For this scene, a brown paint spectrum was embedded 
randomly in the scene to represent 400 subpixel targets with 
fill factors varying from 5% to 25%. The ACE detection 
results are shown in Figure 4 for fully sunlit, fully shadowed 
(labeled full) and half-shadowed scenes (labeled half) for 
cloud optical depths of 2 (blue) and 30 (red). Again, there are 
improved detection results when the scene is partitioned into 
sunlit and shadowed regions before being processed, with the 
half-shadowed scenes showing the lowest detection 
performance. 
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Figure 4. ROC curves for brown paint subpixel targets in the Yuma, 
WA scene using the ACE detection algorithm. The results for the 
fully sunlit scene (black), fully shadowed scene (full) and half cloud 
shadowed scenes (half) for cumulus cloud of optical depths of 2 
(blue) and 30 (red). 
 
3.3. MCScene-based Shadow Simulations 
 
For this initial study, a simple slab cloud model, see Figure 1, 
was used to produce a uniform cloud which cast a shadow 
over 2/3 of the central part of the RIT Self-Test reflectance 
scene. Figure 5 shows the RGB radiance images of a cloud 
free scene (top) and 2/3 shadowed scene (bottom), a linear 
stretch was used in this image to emphasize the shadowed 
region of the scene. The MCScene simulations were 
performed with an observer placed at 20 km altitude viewing 
nadir. Other simulation parameters include a rural aerosol 
with a visibility of 23 km and use of MODTRAN’s mid-
latitude summer atmosphere model. A 1 km thick cumulus 
cloud was placed to the west of the scene with its base at 2 
km altitude, and an optical depth of 10. A solar zenith angle 
of 20 degrees with the sun due west produced a cloud shadow 
over roughly 2/3 of the scene. This simulation includes the 
soft edge of the cloud shadow due to the varying thickness of 
the optical path through the cloud near the edge of the cloud 
and a 1-pixel gaussian blur to represent sensor optical blur. 
 

 
 

Figure 5. RGB radiance images simulated by MCScene for a subset 
of the RIT Target Detection Self-Test scene for cloud-free (top) and 
a 2/3 cloud shadowed scene (bottom).  
 



3.4 Target Detection Results for MCScene-based 
Simulations 
 
The ROC curves using the ACE detector for the blue roof 
spectrum detected in the MCScene generated scene is shown 
in Figure 6. The detection algorithm was run on the whole 
scene, labeled half shadow, and then run separately on the left 
and right thirds of the scene to capture the complete shadow 
and sunlit regions. Segregating the scene into sunlit and 
shadowed regions before atmospheric correction and 
detection produces better detection results.  
 

 
 

Figure 6. ROC curves for blue roof subpixel targets in the RIT Blind 
Test Scene simulated by MCScene using QUAC atmospheric 
correction followed by the ACE detection algorithm. The results for 
the sunlit part of the scene (black), shadowed part of the scene (blue) 
and the combined shadowed and sunlit scene (red). 
 
In Figure 7, we compare the ACE detection images for the 
sunlit part of the scene. The top detection image is the result 
when the full scene is processed containing both the 
shadowed and sunlit regions. This detection image shows 
missed or weakly detected targets, pointed to with red arrows, 
which were successfully detected when the sunlit part of the 
scene is processed separately.  
 

 
 

Figure 7. ACE detection images for the sunlit portion of the 
MCScene simulated image when the whole image is processed (top) 
and when the sunlit part of the image is processed separately 
(bottom). The red arrows in both images point to targets which were 
not strongly detected in the top image. 
 

4. CONCLUSIONS 
 
This study has used MODTRAN and MCScene radiation 
transport simulations of cloud-free and cloudy conditions to 
investigate the impact of cloud shadows on target detection. 
Radiance scenes were simulated for half-shadowed, fully 
shadowed, and clear-sky conditions using MODTRAN. Blue 
roof and brown paint spectra were embedded into 
hyperspectral reflectance scenes as subpixel targets. The 
simulated radiance scenes were atmospherically corrected to 
reflectance using QUAC, and then target detection was 
performed using the ACE detector. The performance of the 
target detection algorithms was degraded significantly when 
cloud shadows and sun illuminated regions were processed to 
reflectance without segregation into separate regions. 
MCScene simulations showed similar target detection trends. 
In these simulations a slab cloud was used to produce 
shadowed and sunlit regions using part of the RIT Self-Test 
scene with blue roof subpixel targets. Partitioning the scene 
into sunlit and shadowed regions before processing produced 
better detection performance. Future simulations will 
examine the impact of more complex cloud shadows cast by 
realistic 3D clouds on target detection and agricultural data 
products. 
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