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ABSTRACT 

Algorithms for retrieval of surface reflectance, emissivity or temperature from a spectral image almost always assume 
uniform illumination across the scene and horizontal surfaces with Lambertian reflectance.  When these algorithms are 
used to process real 3-D scenes, the retrieved “apparent” values contain the strong, spatially dependent variations in 
illumination as well as surface bidirectional reflectance distribution function (BRDF) effects.  This is especially 
problematic with horizontal or near-horizontal viewing, where many observed surfaces are vertical, and where horizontal 
surfaces can show strong specularity.  The goals of this study are to characterize long-wavelength infrared (LWIR) 
signature variability in a HSI 3-D scene and develop practical methods for estimating the true surface values.  We take 
advantage of synthetic near-horizontal imagery generated with the high-fidelity MultiService Electro-optic Signature 
(MuSES) model, and compare retrievals of temperature and directional-hemispherical reflectance using standard sky 
downwelling illumination and MuSES-based non-uniform environmental illumination.   
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INTRODUCTION 
Long-wavelength infrared (LWIR) hyperspectral imagery (HSI) has significantly improved in quality and availability in 
recent years, sparking interest in a variety of remote sensing applications, such as characterizing surface composition and 
temperature and detecting chemicals and gas plumes.  The exploitation of LWIR HSI technology is however less well 
developed than for visible through short wavelength infrared (SWIR) HSI, where radiation is from the sun rather than 
from thermal emission. Quantitative retrieval of surface temperatures and emissivities from LWIR HSI has been 
demonstrated using both first principles methods1-4 and a semi-empirical, in-scene method5 for the relatively simple case 
of horizontal surfaces and downward viewing under a clear sky.  Here illumination is entirely from atmospheric 
downwelling radiation, and the favorable viewing geometry limits specularity effects for most non-metallic materials.  

The surface retrieval problem is much more challenging in near-horizontal views, where both tops and sides of objects 
are seen.  The tops are viewed at glancing angles, where the material bidirectional reflectance distribution functions 
(BRDFs) are often strongly specular, and the sky background reflected by these surfaces is enhanced by limb 
brightening. The sides of the objects are illuminated not only by the sky but also by the ground and nearby objects, 
making the spectra more blackbody-like and thus less spectrally distinct.  Under these viewing conditions, standard 
LWIR HSI retrieval algorithms are unable to derive quantitative emissivities and temperatures.  However, the problem is 
solvable, at least in principle, with model predictions or measurements of the illumination spectrum at each image pixel.   

In this paper we use a synthetic 3-D LWIR HSI scene to demonstrate reflectance (1-emissivity) and temperature 
retrievals using pixel-specific illumination modeling, and we compare the results with those from a conventional 
retrieval.  The pixel-specific modeling is essentially a closure experiment, as both the forward modeling code, MuSES6,7, 
and the retrieval code, Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes - InfraRed (FLAASH-IR)3,4, use 
the same MODerate resolution TRANsmission (MODTRAN5®)8 radiative transfer model.  However, differences in the 
ways that these codes parameterize the atmosphere, as well as imperfect temperature-emissivity separation (TES), lead 
to some differences between inputs and retrievals.  The largest differences reveal inherent sensitivities in the retrieval 
process, and mimic, in a milder form, uncertainties that might be expected when using 3-D modeling to analyze real 
imagery.  For this scene, the reflectance retrievals using the standard FLAASH-IR downwelling spectrum show much 
larger errors, although the surface temperatures are usually correct to within a few degrees. 
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CALCULATIONS 
Scene Simulation 

The Thermoanalytics, Inc. MultiService Electro-optic Signature (MuSES) code6,7 performs first-principles calculations 
of thermal HSI images of 3-D scenes.  Objects are defined via wireframe meshes to which optical properties (BRDFs) 
and thermal properties are assigned. The BRDFs are parameterized using the Sandford-Robertson model.9,10  MuSES 
computes surface temperatures using a time-dependent heat transfer calculation incorporating convection, conduction, 
and radiation. The radiance emanating from a surface is the sum of thermal emission and reflected environmental 
radiance components. In this context, environmental radiance includes radiance from the sky, terrain, other surfaces of 
the object, and surrounding objects. MuSES computes an infinite-bounce value for the radiance reflected off other 
surfaces using spectral methods that vary with rendering application. The sky downwelling radiation is calculated using 
MODTRAN5.  MODTRAN5 is also used to calculate the transmission and path radiance from each surface to the 
sensor.   

For this work, we assembled an outdoor scene with a pond in the foreground and a building in the background. The 
surface temperature image is shown in Figure 1.  The sensor is 500 m from the center of the scene and 50 m above the 
ground. The ground includes soil, grass, an asphalt road, and volcanic material on a low hill and on a flat area.  The 
building has several different surface materials, including glass. In front of the building there are two boxes made of 
10% Lambertian reflective material but at varying temperatures.  The thermal radiance spectra for each pixel were 
calculated over the 8-14 micron range with 86 triangular instrument functions spaced 5 cm-1 apart.   

 
Figure 1.  Temperature image of the MuSES scene.  Grayscale corresponds to a temperature range of 290 K (black) to 320 
K (white). 

Environmental Radiance 

The equation for at-sensor LWIR spectral radiance at wavelength λ, elsewhere written in the Lambertian reflectance 
approximation3,4, generalizes to 

  (1) 

for surfaces described by a BRDF, denoted F(θ,θr,φr).  Here τ is the surface-to-sensor atmospheric transmission, B(T) is 
the Planck function of surface temperature T, ρ is the directional hemispherical reflectance (DHR), I is the product of the 
environmental radiance and a transmission factor, and U is the atmospheric path radiance. Equation (1) is compatible 
with MODTRAN and other band model radiative transfer treatments, if one allows the transmission factor for the second 
term to differ from that for the first term, τ, accounting for differences in the spectral radiance fine structure.  For 
consistency with other notation we refer to the angle between the surface normal and the line of sight (LOS) as the 
“incident” polar angle, θ, and the polar and azimuth angles associated with the incoming environmental radiation as the 
“reflected” angles θr and φr, respectively.  We assume that the surfaces have no striae or other oriented marks, so the 



BRDF’s azimuthal dependence incorporates only the difference between the incident and reflected azimuth angles, and 
we choose a fixed incident azimuth angle.  The DHR is the BRDF integrated over the hemisphere above the surface: 

  (2) 

The DHR for the Sandford-Robertson BRDF model has an analytical form.10  

It would be extremely cumbersome to formulate and retain the (θr,φr) dependence of the environmental radiance at every 
pixel and wavelength.  Instead, we define an “effective” environmental radiance, De, based on a factored representation 
of the second term in Equation (1): 

  (3) 

Note that De, like L, is an HSI data cube.  De depends on the surface BRDF’s (θr,φr) dependence, but it is independent of 
the reflectance magnitude.  Therefore an estimate of De obtained from a single MuSES scene simulation would be 
applicable to a family of surfaces with similar levels of specularity but different absolute reflectances. 

The environmental illumination calculations performed in MuSES are not currently output by the code.  Therefore we 
derived De using Equations (1) and (2) by starting from the output radiance image, L, subtracting U and the transmitted 
surface thermal emission (the first term in Equation (1)), and dividing the result by ρ(θ).  Since the distances between 
objects in the scene are smaller than the distance to the sensor, the atmospheric components τ and U vary only slightly 
across the scene.  We used average values of these quantities obtained by running FLAASH-IR on the MuSES radiance 
image. The results were very close to MODTRAN5 calculations for the sensor-to-scene-center LOS using the MuSES 
model atmosphere. The surface thermal emission component was calculated from maps of material type, surface 
temperature and range (distance to the surface) used in the radiance simulation.  We note that as ρ(θ) approaches zero, 
this method for deriving De becomes inaccurate, but at the same time De becomes unimportant for temperature and 
emissivity retrievals. 

FLAASH-IR Retrievals 

The original version of the Spectral Sciences, Inc. FLAASH-IR algorithm solves the radiance equation (1) for horizontal 
Lambertian surfaces and scene-average atmospheric spectra. In this simplified model, De is the transmitted sky 
downwelling flux, denoted D.  Detailed descriptions of FLAASH-IR are given elsewhere.3,4  Trial atmospheres are 
modeled by starting from a layered approximation to a standard MODTRAN model atmosphere and forming a look-up 
table (LUT) by modifying the temperature, water vapor and ozone profiles. The retrieved atmospheric τ, U and D spectra 
are interpolates from this 3-D LUT that minimize a total in-band squared radiance error  summed over a selected set 
of i diverse pixels: 

  (4) 

Here ε denotes spectral emissivity, and 

  (5) 

where  denotes spectral smoothing with a running average.  That is, the quantity to be minimized is a measure of the 
difference between the actual pixel radiances and the radiances calculated from smoothed emissivities, where the 
emissivities pertain to a trial atmosphere and trial pixel temperatures.  Once the atmosphere is retrieved, the temperature 
and emissivity or reflectance images are obtained by minimizing the radiance error with respect to T for each pixel in the 
scene.   

For the current work, we prototyped a new, more general version of FLAASH-IR, in which D is replaced by the De data 
cube in the TES step.  With this modification, the retrieved reflectance, 1-ε, is the DHR, and can be directly compared 
with the DHR of the surface input to MuSES. 

While the De replacement in FLAASH-IR is straightforward, a complication is that De associated with a 3-D 
environment can be much larger than the transmitted sky downwelling D, and thus may approach, or even exceed, the 
value τ B(T).  When these quantities are equal—i.e., the brightness temperature of the environmental illumination 
matches that of the surface—the emissivity solution, below, becomes indeterminate: 



  (6) 

The indeterminacy results in unstable retrievals at certain wavelengths, emissivities and temperatures.   The instability 
can in turn cause a problem in calculating , the spectrally smoothed emissivity, when it occurs at wavelengths within 
the averaging window.  Fortunately, this last problem can be mitigated: we formulate  as a linear regression slope, for 
which the solution is 

  (7) 

With this expression, a brightness temperature mismatch at any wavelength within the averaging window assures a 
stable value of . 

RESULTS 
Table 1 compares input material temperatures (“true”) with FLAASH-IR retrieved temperatures for various locations in 
the MuSES scene.  With the sky radiance, D, as the illumination source, the temperatures are generally accurate to 
within a few degrees.  Using De from MuSES instead brings the temperatures into much closer agreement with the true 
values—within 0.3 degrees or less in five out of the seven locations.  The most notable exception is the “volcanic flat” 
area (the upper arrow in Figure 1), where the combination of a specular material and low viewing angle makes the DHR 
very large, around 0.9.  With the low emissivity of ~0.1, the surface emission is small compared to the atmospheric 
contributions to the radiance, making the surface temperature poorly determined.  This difficulty in remotely sensing 
temperatures of reflective surfaces is a general one, regardless of the sources of illumination.  In contrast, the “volcanic 
hill” surface (the lower arrow in Figure 1) is viewed at a higher angle, resulting in a lower DHR and higher emissivity 
(around 0.3), and therefore a much more accurate temperature retrieval. 

Table 1.  Comparison of true and retrieved surface temperatures (K) for the MuSES image. 

Material Pixel x,y 
location True 

FLAASH-IR 
(sky D 

illumination) 

FLAASH-IR 
(MuSES De 

illumination) 
glass 353,239 300.9 303.5 300.9 
grass 318,354 304.4 304.1 304.4 
left box 486,264 328.2 324.9 328.5 
volcanic hill 107,347 310.8 311.5 311.1 
volcanic flat 154,330 310.7 313.9 314.3 
road 354,293 319.4 317.2 318.0 
water 533,401 294.8 299.6 294.8 

Figures 2 and 3 show DHR spectrum comparisons for these same locations.  For around half the surfaces, the simple 
retrieval based on the sky illumination, D, reasonably preserves the spectral shape, although the absolute reflectivities 
are too low.  This is in accord with a previous paper on FLAASH-IR3, in which using D for vertical surface retrievals 
resulted in reflectance spectra that appeared to be around a factor of two too low but reasonable in shape.  In the current 
scene, the differences between using D and the MuSES-derived De are much more dramatic for some surfaces, such as 
glass.  The extreme specularity and vertical orientation of the glass result in a large De, in which the illumination 
originates from the sky and/or ground at near-horizontal angles.  Given the high sensitivity of specular reflections to the 
3-D scene geometry, obtaining accurate DHRs for such highly specular materials in complex, real-world scenes would 
require extremely accurate modeling of the scene objects and viewing geometry. 



 

 

 
Figure 2.  DHR results from FLAASH-IR and comparisons with true (input) spectra. 

The ragged pond water spectra retrieved using the MuSES De (Figure 3, at right) illustrates the indeterminacy problem 
discussed above.  We ascribe its occurrence here to a combination of the specular reflection of the building in the water, 
which yields a large De, and the water’s low temperature. 



 
Figure 3.  DHR results for three pond pixels from FLAASH-IR and comparison with true spectra. 

SUMMARY AND CONCLUSIONS 
The results of this study support the use of radiometrically accurate 3-D simulations of environmental illumination to 
assist in the retrieval, via temperature-emissivity separation (TES), of directional hemispherical reflectance and 
temperature properties of unknown surfaces in LWIR hyperspectral imagery.  We caution that reflectance or emissivity 
retrievals become indeterminate as the brightness temperature of the illumination approaches that of the surface, an 
occurrence that is much more likely with horizontal or near-horizontal viewing than with near-nadir viewing. In these ill-
determined cases, surface identification and characterization would be better achieved through comparisons between 
simulated and observed radiance spectra.  On the other hand, the temperature retrievals are likely to remain accurate.  

This study also provides support for FLAASH-IR’s TES algorithm, which is based on an assumption of emissivity 
spectral smoothness.  This algorithm is free from assumptions about absolute reflectance values or the presence or 
absence of specific materials in the scene.  This makes it well-suited to situations where specularity generates elevated 
reflectances and a high degree of reflectance variability.  However, with certain materials, and/or when the effect of the 
atmosphere is small, such as in dry conditions, an accurate absolute emissivity may not be retrieved with this TES 
method.  We ascribe this to shallowness of the minimum in the objective function, , under those conditions. The TES 
errors with real HSI data have typically been in the direction of overestimated temperature (underestimated emissivity).11 
However, in this study we observed some errors in the opposite direction, such as with the road pixel in Figure 3. 

One advantage of performing TES is the convenience of making direct comparisons with reflectance spectral libraries, 
without needing to carry along atmospheric information for a material radiance simulation.  Another advantage is that 
the retrieval of surface temperature, even if it is only a rough estimate, greatly constrains the range of simulations to 
consider.  Finally, TES can address deficiencies in an initial scene model, which is unlikely to perfectly match real 
surface temperatures.  For example, TES performed on the measured HSI data could be used to retrieve background 
temperatures that refine the scene model and speed its convergence to the real scene properties.  Our observation that the 
FLAASH-IR temperature retrievals were not very sensitive to the illumination suggests that 
simulation/retrieval/refinement iterations would converge rapidly.  
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