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ABSTRACT 

 
This study examines how hyperspectral rare target detection 
performance is affected by the method of atmospheric 
compensation used to convert the data to reflectance units. 
Rare and subpixel target detection algorithms employ 
contrast enhancement methods to suppress signatures from 
the background materials.  Therefore, when evaluating 
atmospheric compensation methods, it is important to 
consider their accuracy in contrast-enhanced space.  In 
particular, a key requirement for good detection is the 
suppression of atmospheric band residuals in the reflectance 
spectra, making them as smooth as possible.  This explains 
the success of the empirical Quick Atmospheric Correction 
(QUAC) algorithm and the importance of supplementing 
first principles methods with spectral polishing.  We 
illustrate these findings using two data sets acquired by the 
Rochester Institute of Technology (RIT), three different 
whitening-based detection algorithms, and three different 
atmospheric compensation algorithms, QUAC, FLAASH 
and ATCOR. 

 
Index Terms— Spectral, hyperspectral, atmospheric 

compensation, target detection 
 

1. INTRODUCTION 
 
One of the most valuable uses of hyperspectral imagery is 
for detection and identification of spectrally unique 
materials.  To mitigate effects due to the atmosphere, 
detection algorithms typically work with atmospherically 
compensated (or “corrected”) data and target spectra in 
reflectance units.  Detection performance depends on many 
factors, including target spectral signature contrast and 
structure, the scene backgrounds, and the accuracy with 
which the atmospheric contributions have been modeled and 
removed from the data.  The fidelity of the atmospheric 
compensation is always a concern.  There may be errors due 
to incomplete knowledge of the atmospheric composition, 
uncertainty in the sensor’s optical characteristics, or 
approximations in the compensation method itself, any of 
which can lead to small atmospheric band residuals in the 
retrieved reflectances. 

Detection algorithms, especially those used for rare or 
subpixel targets, employ contrast enhancement methods, 

such as covariance whitening or subspace projection, to 
suppress signatures from the background materials.  Since 
the backgrounds tend to be spectrally smooth, the contrast 
enhancement effect is somewhat similar to that of a high-
pass filter, where fine spectral features of the target are 
preserved while broader, smoother features from the 
backgrounds are suppressed.  When comparing atmospheric 
compensation methods for detection applications, it is 
important to consider their accuracy in contrast-enhanced 
space. This may not be well described by typical criteria 
such as RMS or spectral angle error.   

In this report we evaluate target detection performance 
with two visible through short-wave infrared (VSWIR) 
hyperspectral images acquired in different experimental 
programs under the direction of the Rochester Institute of 
Technology (RIT) Center for Imaging Sciences. One image 
is the publicly available detection self-test image taken in 
2006 with an airborne HyMap sensor over Cook City, MT 
(http://dirsapps.cis.rit.edu/blindtest/).  The other image was 
taken in 2016 with an airborne ProSpecTIR sensor over the 
RIT campus (E. Ientilucci, private communication). Both the 
scenes have embedded targets with ground truth spectra, a 
diversity of manmade materials, and mainly vegetated 
natural backgrounds.  We analyzed the images using several 
different atmospheric compensation processes and detection 
algorithms, and correlated the results to measures of spectral 
accuracy.  A partial summary of our results for the self-test 
image appears in an atmospheric compensation review paper 
in press [1].  

  
2. ATMOSPHERIC COMPENSATION ALGORITHMS 
 
The provided datasets contain both the original radiance data 
and ATCOR-processed reflectance data cubes [2].  For 
comparison to these reflectance results we processed the 
radiance data with a standalone version of QUAC [3] and 
with the FLAASH [4] algorithm supplied with the ENVI® 
software package (Harris Corp.).  QUAC is an empirical 
algorithm that doesn’t require a priori inputs.  The baseline 
FLAASH compensation was performed with the 
MODTRAN mid-latitude summer atmosphere, a 7-channel 
polishing width, and defaults for the remaining settings.   

ATCOR and FLAASH are first-principles algorithms 
based on MODTRANTM [5] radiation transport calculations.  
Both algorithms provide spectral polishing options, which 



improve the spectral smoothness of the retrievals using a 
linear or affine transform developed from in-scene spectra.  
The basic polishing concept was introduced by Boardman 
[6], and his EFFORT method is available in ENVI®.  
ATCOR offers a choice of several different polishing 
methods [7].  FLAASH provides a single method based on a 
running spectral average with a user-adjustable width [8].  
The 2016 RIT campus image was atmospherically 
compensated using ATCOR followed by SpecTIR’s 
proprietary polishing and “virtual empirical line” methods. 

To provide additional atmospheric compensation 
comparisons, we turned off FLAASH’s native polishing and 
added a new post-processing polishing step.  As in 
FLAASH’s native method, the reflectance spectra are 
smoothed with a running average, the smoothed and original 
spectra are compared to derive a polishing factor, and the 
factor is applied to the scene.  However, the new algorithm 
de-weights extreme values in a second application of the 
running average, and also allows the polishing factor to vary 
in the cross-track direction to compensate for possible 
variations in sensor response and atmospheric effects across 
the field of view. 
 As described in detail elsewhere [3], the QUAC 
algorithm works by matching an average of diverse, non-
vegetated spectra from the scene to an average of diverse 
reflectance spectra measured in the laboratory. This 
thoroughly eliminates scene-wide atmospheric effects, 
making the spectra as smooth as possible and essentially 
independent of the atmospheric condition and the sensor 
characteristics.  There is no direct correspondence of the 
materials selected from the scene and the library. However, 
it is empirically observed that the scene endmember 
reflectance average and the library endmember average are 
similar as long as the scene has reasonable surface variety.  
 

3. TARGET DETECTION METHODS 
 

For the self-test scene, we ran each of the above three 
atmospheric compensation processes with three different 
target detection algorithms on the subpixel targets.  The first 
detection algorithm is the standard ACE detector [9].  For 
the ACE score one may choose any of various 
monotonically related quantities, including spectral angle or 
trigonometric functions thereof, in de-meaned, covariance-
whitened data space [10].  The other two detectors are 
locally adaptive variants of ACE that are suitable for single-
pixel or subpixel targets.  One, denoted LM-ACE, is the 
locally de-meaned detector described in Cohen et al. [11]; 
the de-meaning kernel is 3x3 pixels.  The other, denoted 
LV-ACE, adds the further step of whitening the local 
variance (i.e., the covariance matrix diagonal) within a 7x7 
kernel.  For the RIT campus scene we ran only the ACE 
detector, since the targets are multiple-pixel. 

Due to very strong atmospheric absorption, certain 
spectral bands, labeled “bad” bands, are poorly retrieved or 
contain little useful information, and should be excluded 

from the analysis.  We used the same “bad band” lists for all 
atmospheric compensation methods.  Problems can occur in 
the data whitening step if the covariance matrix is computed 
from an insufficient number of data points (i.e., pixels) or 
has less than full rank; the latter occurs if “good” bands have 
been replicated or interpolated.  To avoid these problems, 
we regularized the covariance matrices using the Oracle 
Approximating Shrinkage method [12]. 
  

3. RESULTS 
 

Self-Test Image.  The HyMap self-test image, shown in 
Figure 1, contains a number of multiple-pixel and full pixel 
fabric and vehicle targets.  The full dataset [13] includes 
ground-truth spectra and nominal “truth” regions of interest 
(ROIs) for each target.  We focused on the four subpixel 
targets, as they are more difficult to detect and their results 
are more straight forward to interpret.  Once the targets were 
definitively located, we were able to refine the ROI 
locations by applying small shifts of up to a few pixels.  For 
one of the targets, vehicle V2, the ROI was uncertain, so we 
have omitted those results. The measured target reflectance 
spectra are shown in Figure 2. Target V1 is a white vehicle, 
F3 is a blue cotton fabric and F4 is a red nylon fabric. 
 

 
Figure 1. The RIT Target Detection Self-Test scene in true 
color. 

  

 
Figure 2. Spectral reflectance for targets used in this study. 
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A summary of our results is shown in Table 1, given as the 
number of false positives in detecting the target pixel. The 
subpixel fabric targets F3 and F4 are also present as full-
pixel emplacements, resulting in over-counting the false 
positives by up to several counts.  Detection algorithms give 
different results depending on the atmospheric compensation 
algorithm used.  The best performance with the ACE 
detector is with the empirical QUAC algorithm, while the 
updated polishing technique applied to FLAASH gives the 
best performance for the two locally adaptive variants of 
ACE. The best results for each target and detector are 
highlighted in red in Table 1. 

In Figure 3 we show the spectral angle (SA) between 
the three target spectra (Figure 2) and a full target pixel from 
the atmospherically compensated scenes. Also shown are the 
same SA results using the whitened target and scene spectra. 
In both cases we have normalized the SA results by the 
FLAASH SA results. The ATCOR results generally produce 
the smallest spectral angle in reflectance space, but when 
calculating the SA in whitened space QUAC and FLAASH 
with the new polishing scheme produce the smallest spectral 
angle and consequently the best detection performance using 
the ACE detector (see Table 1). 

  
RIT Campus Image.  This image is shown in Figure 4.  It 
contains three large tarps, red, green and blue, placed on the 
grass near a parking area; see Figure 5.  In addition to the 
supplied ATCOR-based reflectance data cube, we 
compensated the radiance data using FLAASH and QUAC. 
FLAASH results were generated using the original polishing 
method and the updated polishing method.  Contiguous 
pixels containing the spectral signature of the green, red and 
blue targets were selected by hand and assigned as target 
ROIs.  With these sizable ROIs, the number of target-
containing pixels is sufficient for generating useful receiver 
operating characteristic (ROC) curves for detection. 
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Figure 3. Spectral angle results for different atmospheric 
compensation approaches normalized to FLAASH SA 
result. 

Table 1.  Number of false positives in detecting subpixel 
targets in the RIT self-test dataset. 

Compensation 
Algorithm Target ACE LM-

ACE 
LV-
ACE 

ATCOR V1 20 2 2 
 F3, 1m2 233 13 15 
 F4, 1m2 110 35 2 
FLAASH V1 17 1 1 
 F3, 1m2 412 7 10 
 F4, 1m2 145 48 4 
FLAASH with 
New Polishing V1 29 1 1 
 F3, 1m2 143 7 5 
 F4, 1m2 110 32 2 
QUAC V1 3 2 2 
 F3, 1m2 99 7 9 
 F4, 1m2 102 42 2 

 

 
Figure 4. True color reflectance image of ProSpecTIR HSI 
data of RIT campus and target area.  
 



 
Figure 5. Detail image showing the four-color targets 
(green, red, brown and blue) placed near the Center for 
Imaging Science building. 
 
The ROC curves using the ACE detector are shown in 
Figure 6 for atmospheric compensation with QUAC, 
FLAASH with the new polishing method, and the 
ATCOR/SpecTIR method.  Once again QUAC is the best 
performing atmospheric compensation algorithm with ACE 
detection.  The second-best is FLAASH with the updated 
polishing method. 
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Figure 6. ROC curves for the large sunlit green, blue and 
red targets using three different atmospheric compensation 
techniques.  

 
4. CONCLUSIONS 

 
Our results from two VSWIR hyperspectral data sets 
indicate that rare target detection is strongly affected by the 

atmospheric compensation method used to retrieve 
reflectance spectra from the radiance data. The results 
correlate with retrieval accuracy in whitened space. The 
empirical Quick Atmospheric Correction (QUAC) 
algorithm, which is very simple to use, gives surprisingly 
good results, comparable to or better than those from first-
principles atmospheric compensation methods, ATCOR and 
FLAASH.  We ascribe QUAC’s success to its enforced 
spectral smoothness, which provides good signature fidelity 
in whitened space. We recommend further investigation 
with a greater variety of images and processing methods, 
including different methods of covariance regularization and 
band selection. 
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