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ABSTRACT

Diffusion learning is a generative technique commonly applied to create new images or audio directly from
sampled noise. The machine learning approach works by applying degrading signals, such as noise, continuously
and learning the denoising process with a neural network. In place of noise, other operations can be performed,
such as the addition of atmosphere effects using a physics-based radiative transport code. In this paper, we
explore coupling the MODTRAN software to a diffusion learning framework. The goal is to apply atmosphere
systematically for a variety of reflective surfaces and use diffusion learning to train models for atmospheric
correction. To achieve this, we generate a scoped dataset containing randomized Lambertian surfaces with
differing solar illumination and surface angles.
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1. INTRODUCTION

Diffusion learning is a generative artificial intelligence (AI) technique commonly employed to create synthetic
imagery, and other types of data. Diffusion learning works by training a model, typically deep neural networks,
to de-noise the source information.1 The technique has far ranging applications, from image and document
generation with enterprise AI systems to small molecule drug discovery.2–4

While application areas of diffusion learning vary, the key constant across them is twofold, 1) an initial seed
state typically sampled from random noise and 2) a training process that can be split into incremental, Markovian
processes representing the addition of noise systematically to pristine data. Recent work applied diffusion learning
to generate novel protein structures by applying diffusion learning on the angles between amino acids that specify
the proteins inherent structure.5 This abstraction from direct prediction of structure enables the neural network
to successfully learn a parameterization of an otherwise extensively large configuration space. In the following,
we expand along this idea, instead generating parameters to drive a physics-based calculation used to train a
neural network for atmospheric correction, rather than learning the direct process.

Atmospheric correction is a key processing step for overhead electro-optical/infrared (EO/IR) imagery. In this
process, the detected sensor radiance is corrected with respect to the incident and scattered light due to the effect
of observation through the atmosphere. The result is the true surface reflectivity measured by a remote sensor.
Significant past effort has been dedicated to atmospheric correction by physics-based, in-scene, and recently
data-driven machine learning approaches.6–12,12–14 Physics-based approaches are difficult primarily due to the
substantial information requirements including the state of the atmosphere, calibration, and estimated optical
depth, which are seldom known to the required accuracy. In-scene algorithms have dominated the atmospheric
correction space due to no a priori information requirements.11 Recent works with various machine learning
approaches have indicated similar or improved performance to state-of-the-art in-scene models.13–17

While forward modeling of atmospheric correction can be difficult, the reverse process can be modeled accu-
rately and robustly via physics-based radiative transport (RT) modeling.18–20 In RT models, a line-of-sight (LoS)
is constructed from the target (i.e.- surface material) to the observer (i.e.- sensor platform). For LoS through
the atmosphere, the chemical composition, temperature, pressure, and other key quantities are input, rather
than unknowns, and used to compute the effect on the observed radiance. This process shares a key similarity
with successful applications of diffusion learning in that it is easily broken down to a near-continuous problem.
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Instead of directly specifying the LoS terminus at the observer, which may shoot through a large amount of
atmosphere, diffusion learning can be applied to parameterize the observer altitude. At short diffusion times the
observer is very near the sensed target, producing only a minor ’noise’ effect when sensing the target that can be
continuously strengthened by increasing the LoS column height. Using this abstraction, we develop a training
framework that applies diffusion learning to key physical quantities (i.e.- sensor altitude) of a physics-based RT
calculation using un-labeled training data.

In this paper, a neural network is trained within a novel diffusion learning framework. However, in place of
generating random noise according to the diffusion noise schedule, as in conventional diffusion learning training
algorithms, parameters to drive a physics-based RT modeling tool, MODTRAN,18 are generated and used to
directly compute the ”noise” contribution due to the atmosphere directly during training. This enables trained
models to accurately capture and de-noise the nontrivial, spectral contribution of the atmosphere to an observed
sensor signal. The neural network results are presented and discussed. Finally, a synthetic scene is created and
results for each pixel are compared to the in-scene QUAC atmospheric correction algorithm.11

2. METHODS

Training Procedure

Conventional diffusion learning algorithms learn to predict noise given an input noisy signal and noise schedule.
Applications of these algorithms, such as popular image generation tools,2,3 generate noise on-the-fly to enable a
fully self-supervised training regime that requires no labeled data, only a collection of pristine images is required.
While training a conventional diffusion learning model, the diffusion time is selected at random and used to
generate a noisy image with precisely defined noise level via a ’noise schedule’ mapping function. The choice of
noise schedule function is important,21 but herein we consider the simplest noise schedule, ns = 1− t, where t is
the representative diffusion timescale, normalized between 0 (no noise) and 1 (only noise).

For atmospheric correction however, the noise is not known and cannot be directly applied to the pristine
signal. Instead, we leverage radiative transfer (RT) calculations, using MODTRAN, to compute the truth noise,
Ntruth, at the specific noise schedule. To achieve this, we map the noise schedule directly to the column pressure
of the atmosphere above the pixel. This implies an altitude which is used to drive the RT calculation.

Given a supplied input truth surface reflectance, Rsurf , the radiance at the specified altitude, Lalt is computed
by MODTRAN and converted to the altitude specific reflectance, Ralt by

Ralt =
Laltπ

Isol cos(θsol)
(1)

where Isol is the solar irradiance and θsol is the solar zenith angle. In the signal processing analogy, Ralt is the
’noisy pixel’ to be de-noised by the neural network.

The truth noise component, Ntruth, is computed from the MODTRAN result (Ralt) and input pixel (Rsurf ),
rather than sampled, as

Ntruth = (Ralt −
√
nsRsurf )/

√
1− ns (2)

Normalization is performed to force the noises (range [-1,1]) into the same numeric range as the pixel reflectance
data ([0,1]). The predicted noise is then computed from the neural network, N∗

pred = NN(Ralt, ns), and Ralt is
de-noised using the predicted noises,

R∗
surf = Ralt −

√
1− nsN

∗
pred/

√
ns (3)

where the ∗ indices the predicted values.

Two loss functions are computed, the first is the training loss based on the mean squared error (MSE) of the
noises, MSE(Ntruth, N

∗
pred), which is used to update the gradients and train the neural network. Second is just

used as a convergence metric based on the de-noised pixel reflectance, MSE(Rsurf , R
∗
surf ). The training step is

summarized in Algorithm 1 for an arbitrary data batch.



Algorithm 1 Training Step with MODTRAN

function train step(x)
batch size, nspectral bins, channels = x.shape

# sample diffusion time
diffusion time = random.uniform(0, 1, size = (batch size, 1, 1))

# compute noise schedule and generated altitude
ns = noise schedule(diffusion time) # 1−diffusion time
h = − T0R

gMair
log(ns) # T0, R, g, and Mair are physical constants

# compute truth noise from MODTRAN result
for data in batch size do

xnoise = run MODTRAN(x, h)
Ntruth = (xnoise −

√
nsx)/

√
1− ns

# de-noise with neural network, compute training loss
Npred = neural network(xnoise, ns)
loss = (Npred −Ntruth)

2

return loss

Neural Network Structure

A straightforward 1-D convolutional neural network (CNN) structure was chosen to demonstrate the training
concept with MODTRAN. This structure performs convolutions across the spectral bins with padded sizing
ensuring that at each layer, the number of spectral bins remains constant. This is in contrast to designed feature
extraction networks, like U-Nets, common in applying diffusion learning to image data.

Figure 1. Neural network structure used for atmospheric correction with 71 spectral bins and a single feature channel

An overview of the network structure is shown in Figure 1. Two inputs are supplied to the neural network, just
as in conventional diffusion learning approaches. The first is a noisy pixel, corresponding to either an arbitrary
altitude and noise schedule, or top of atmosphere and noise schedule of 0. The spectral data is processed first by a
dense layer while the noise schedule is processed by a sinusoidal embedding layer with 25 embedding dimensions22

to ensure network sensitivity with respect to that input regardless of the amount of other input data. The layers



are concatenated and processed by a 1-D CNN with two filter levels. The first includes three successive 64
filter layers with batch normalization and ReLU activation. The second set of 3 layers contain 128 filters, batch
normalization, and ReLU activation. The final layer is a dense layer that outputs the predicted, de-noised pixel
with same spectral resolution as the supplied input, Ralt.

As the primary goal of this paper is testing the training algorithm and incorporation of physics-based noise,
little optimization of the network structure and its hyperparameters were performed. The batch size was set at
64 data samples and the learning weight was set initially to 1e − 3 with weight decay set to 1e − 4. Data for
each training batch was sampled from a large, synthetic data set of pixel reflectances containing 21, 000 unique
Lambertian spectral response functions. Validation data was obtained from MODTRAN’s spec alb.dat database
which contains ∼ 100 scene-averaged and measured spectral material responses.

Data Generation

Figure 2. Synthetic training data examples of pristine pixel reflectance

Data was generated with six main motifs mimicking real material spectral response. A sampling of example
training data is shown in Figure 2. Key motifs include random walks with biases both upward and downward
in reflectance space as a function of microns, constants with noise added, as well as sharp and broad Gaussian-
like spectral responses with shifted centers and randomized widths. Data was not checked to ensure physical
consistency, such as a strong feature in an unlikely spectral region, but is guaranteed to be in the range of [0,1].

Data was generated for each motif 1, 000 times. For each motif, key properties such as Gaussian height or
amount of sampled noise added to the constant signal, were also sampled. In total, 21, 000 unique spectral
responses were created and drawn from during training. While each data is unique, similar data certainly exists
within the generated training set. This was mitigated by using a limited number data for training initially
to determine the minimal number of required data, approximately 3, 200, for predictive performance deemed
adequate for this study.

MODTRAN Setup

The key idea behind the approach is to replace the generation of noisy images from Gaussian noise with known
mean and variance with less characterized noise computed from physics. We employ MODTRAN18 for radiative
transfer calculations to accurately model the atmospheric contribution to the surface reflectance.

MODTRAN calculations were performed with atmospheric scattering and using a Lambertian surface re-
flectance model with a Nadir-viewing geometry with fixed overhead solar position. The atmosphere was held
fixed to mid-latitude summer day with fixed, cold surface temperature of 252.166 K. The output spectral range
was set to 1.2 to 5.0 microns with 0.002 step size and 0.005 spectral bin resolution.

The spectral range studied was initially focused on the short-wave infrared (SWIR), but several wavelengths
in the mid-wave infrared (MWIR) were added to test the approach in that region, despite the lack of variation



Figure 3. Example Validation Data (colors) with truth (dashes) and MODTRAN runs to produce NN input data with
noise at top-of-atmosphere (lines).

in surface temperature for the training data. For each MODTRAN calculation, spectral data was extracted at
0.02 micron intervals between the ranges of 1.5 to 1.8, 2.0 to 2.5, and 3.5 to 4.1 microns. While this is a unusual
spectral range, it was picked to be both close to strong atmospheric absorbers where the reflectance signal is
inherently weak, and to extend the approach to alternative bands for atmospheric correction. Example truth
data and processed MODTRAN data, to be used as NN inputs, is shown in Figure 3.

MODTRAN is run in parallel during training which increases the computational cost substantially. However,
due to the relatively small network employed, the training time per-step is approximately ∼ 5 minutes per batch
on AMD EPYC 7642 processors.

3. RESULTS

Results for training the neural network are shown in Figure 4. The network converges quickly, with reasonable
results obtained by Epoch 20. Generally, the procedure for recovering the de-noised image follows a reverse
diffusion approach with use of the exponential moving average weights of the neural network to ensure smoothness.
In place of that approach, we perform reverse diffusion across all noise levels and average the results using the
normal network weights. This was done as it is currently unclear if with physically relevant noise present,
there should be a baseline noise level in the image predictions. In practice, this modification to the reverse
diffusion procedure yielded the best predictive result. 50 steps were used for all reverse diffusion pixel generation.
Computationally, the requirements for reverse diffusion at this level of output data were low. A single pixel
generation completed in ∼ 0.73 seconds on average for 71 spectral bins.

Figure 4. Convergence for noise training loss and image loss

Neural network predictions were validated against MODTRAN’s spec alb.dat database. Several data were
omitted due to invalid spectral ranges, but the bulk of the database was used as-is. Five specific spectral



albedos were selected (farm, desert, granite, urban, ocean) for a deeper investigation. Neural network predicted
reflectance values and truth data is presented for these five materials in Figure 5. Agreement is largely excellent
for these materials. Near the selected spectral window edge, and particularly near ∼ 2.0 microns, performance is
degraded. The selected wavelength range in that region goes very near large atmospheric spectral features that
are optically thick. These wavelengths were selected as a stressing test for the approach. The trained network
was not able to recover the truth signal in this regions. Further, conventional remote sensing strategies typically
avoid these regions of the spectrum anyways.

Figure 5. Neural network predicted, atmospherically corrected surface reflectance (dots) and truth data (lines) for selected
validation data (colors)

Truth-normalized, |pred − truth|/truth, and absolute error for the entire validation database is shown in
Figure 6. Validation data consists of both smoothed and approximate surface reflectances (i.e. ’farm’) as well as
measured properties (i.e.- ’granite’) with numerical scatter present in the data.

Of immediate notice is the large normalized error for material ’constant 0%’, due to the complete lack of
signal. Further, other dark and near-black surfaces (ocean, black plastic) also exhibit high normalized error.
However, when paired with the absolute error metric, it becomes clear that the neural network is correctly
predicting these material properties, but with some scatter. In particular, ‘constant 0%‘ has the lowest absolute
error present of all validation data. For other materials, performance is good leading to low absolute errors
for many materials. Error can also be shown as a function of spectral bin, as in Figure 7 for the five selected
validation data. Most error is centralized to the window edges, where the atmospheric transmittance is small.
This is an expected point of failure, as is the case for many other atmospheric correction algorithms. The ’ocean’
material, which is nearly black, has the highest peaks in normalized error (not shown) near the strong H2O
atmospheric features. However, for absolute error, the ’farm’ and ’desert’ materials are the worst predicted, and
brightest reflectors, yet still give adequate results.

Figure 6. Errors for the validation dataset

Finally, we compare the neural network approach to the QUick Atmospheric Correction (QUAC) algorithm.11

QUAC is an in-scene atmospheric correction algorithm that only requires information from the bulk scene. To



Figure 7. Spectral dependence of error

compare the diffusion learning neural network approach with QUAC we created a synthetic 1-D scene consisting
of selected data from the validation database. In total, 16 pixels were added to the scene. It should be noted
that this is a rather small scene with few endmembers for QUAC. Further, the scene pixels used to construct
the QUAC scene utilized the same constant atmosphere used for training the neural network approach. A true
comparison with QUAC on a larger scene with a different atmosphere than used during training should be a
goal for future work. Nonetheless, we compare both algorithms on a handful of single-pixel materials, shown in
Figure 8.

Performance of the neural network outperforms QUAC for both SWIR windows studied for all materials
except ’ocean’. For ’ocean’, the neural network predicts negative reflectance values nearest the windows. This
is nonphysical and could be an area for follow-up study. Other materials, such as ’maple leaf’, exhibit nearly
exact shape matching in the spectral reflectance profile. While QUAC does a good job with the shape as well,
it is unable to reproduce the correct reflectance magnitude.

4. CONCLUSIONS

A neural network was trained for atmospheric correction using a diffusion learning framework and the atmospheric
radiative transport code MODTRAN. Once trained, the network requires only the top-of-atmosphere reflectance
(or observed radiance with solar irradiance and solar zenith angle) as input and outputs the predicted noise
to reconstruct the surface reflectance. A novel training procedure based on existing generative AI / diffusion
learning techniques was discussed. In place of generating noise, parameters to drive a forward physics-based
calculate are generated. Noise is then computed directly from the results of the physics calculation, given the
pristine data as input, and used to train a ‘de-noising‘ neural network. While above procedure is applied to
atmospheric correction, the concept of replacing generated noise with generated simulation parameters is general
and could be extended to other approaches and physics solvers.

The network was trained with unlabeled, synthetic data and validated against MODTRAN’s spectral albedo
database. The trained network was able to successfully predict atmospherically corrected spectral profiles for
a range of different materials not used in training. Several atmospheric windows were considered in this pilot
study, two SWIR regions and some wavelengths in the MWIR. The network was able to successfully learn to
correct in each of these regions simultaneously.

Approximate errors for the approach were quantified and showed to have spectral dependence. The largest
error is accumulated nearest any large atmospheric absorption features. This could likely be avoided by careful
choice of wavelengths of interest. Darker materials have larger normalized errors, but lower overall absolute error
than lighter materials.

A comparison was made to an industry-standard in-scene atmospheric correction code, QUAC. For all ma-
terials tested, the neural network produced more accurate spectral reflectance profiles than QUAC, except for



Figure 8. Comparison of atmospheric correction algorithms, QUAC (blue) diffusion learning neural network (orange),
Truth (grey)

dark materials near the spectral window edge. One example was identified where the neural network produced
a nonphysical result, but otherwise results successfully reproduced truth surface reflectance spectral profiles.
This is attributed to the involvement of the physics-based MODTRAN RT solver directly integrated within the
training loop. This enables the network to learn from the key atmospheric physics properties rather than from
learning directly from data alone.

While the trained network successfully demonstrated the diffusion learning concept, the present study only
a small demonstration of the techniques potential. Next steps include, for example, reducing the constraints on
the training data (solar zenith and atmosphere composition), additional parameters to capture observable effects
in alternative spectral bands, such as surface temperature in the mid-wave / adaption to specific sensor bands
of interest, and application to full scenes with pixels containing multiple endmembers.
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